#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
int main(int argc, char ** argv)
{
const char* filename = argc >= ? argv[] : "lena.jpg"; Mat I = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
if( I.empty())
return -; Mat padded; //expand input image to optimal size
int m = getOptimalDFTSize( I.rows );
int n = getOptimalDFTSize( I.cols ); // on the border add zero values
copyMakeBorder(I, padded, , m - I.rows, , n - I.cols, BORDER_CONSTANT, Scalar::all()); Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, , complexI); // Add to the expanded another plane with zeros dft(complexI, complexI); // this way the result may fit in the source matrix // compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[], planes[], planes[]);// planes[0] = magnitude
Mat magI = planes[]; magI += Scalar::all(); // switch to logarithmic scale
log(magI, magI); // crop the spectrum, if it has an odd number of rows or columns
magI = magI(Rect(, , magI.cols & -, magI.rows & -)); // rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = magI.cols/;
int cy = magI.rows/; Mat q0(magI, Rect(, , cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1(magI, Rect(cx, , cx, cy)); // Top-Right
Mat q2(magI, Rect(, cy, cx, cy)); // Bottom-Left
Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right Mat tmp; // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3); q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2); normalize(magI, magI, , , CV_MINMAX); // Transform the matrix with float values into a
// viewable image form (float between values 0 and 1). imshow("Input Image" , I ); // Show the result
imshow("spectrum magnitude", magI);
waitKey(); return ;
}

OpenCV 离散傅立叶变换的更多相关文章

  1. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  2. python 图像的离散傅立叶变换

    图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有 ...

  3. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  4. Matlab图像处理系列4———傅立叶变换和反变换的图像

    注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...

  5. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  6. Matlab图像处理系列4———图像傅立叶变换与反变换

    注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...

  7. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  8. 傅立叶变换—DFT

    背景:最近看到实验室其他同学在用傅立叶变换解决问题,我也想通过并行来解决这个问题,所以看了一下傅立叶变换的东西,感觉涵盖的东西还能多,我只是初步做了一下了解(一定很片面,但是我主要是为了应用它,主要了 ...

  9. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

随机推荐

  1. POJ 1847:Tram

    Tram Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11771   Accepted: 4301 Description ...

  2. JavaScript学习总结(四)

    这一部分我们继续介绍JavaScript的常用对象. Number对象 创建Number对象 方式1: var 变量= new Number(数字) 方式2: var 变量 = 数字; 常用的方法 t ...

  3. shell 实现war包的配置更新和自动发布

    此脚本主要用来实现非maven tomcat项目的war包手动发布, 1.将测试war包上传至指定目录 2.备份目前生产代码 3.自动配置文件替换 4.新版本代码的发布 #!/bin/bash ### ...

  4. inotifywait命令详解及安装

    https://www.cnblogs.com/pyrene/p/6414724.html     安装 https://www.cnblogs.com/martinzhang/p/4126907.h ...

  5. TechEmpower 框架性能测试数据 - 新解读

    1. TechEmpower Framework Benchmark 介绍 TechEmpower 框架性能大比拼平台从 2013 年 3 月开始以来已经历经了 18 轮测试,参与这个平台的框架平台产 ...

  6. Tensorflow学习教程------lenet多标签分类

    本文在上篇的基础上利用lenet进行多标签分类.五个分类标准,每个标准分两类.实际来说,本文所介绍的多标签分类属于多任务学习中的联合训练,具体代码如下. #coding:utf-8 import te ...

  7. Linux] Git: push 出错的解决 master -> master (branch is currently checked out)

      在使用Git Push代码到数据仓库时,提示如下错误: [remote rejected] master -> master (branch is currently checked out ...

  8. Linux inode的正确理解

    一.inode是什么? 理解inode,要从文件储存说起. 文件储存在硬盘上,硬盘的最小存储单位叫做"扇区"(Sector).每个扇区储存512字节(相当于0.5KB). 操作系统 ...

  9. 吴裕雄--天生自然python学习笔记:python 用pygame模块动画一让图片动起来

    动画是游戏开发中不可或缺的要素,游戏中的角色只有动起来才会拥有“生命”, 但动画处理也是最让游戏开发者头痛的部分.Pygame 包通过不断重新绘制绘图窗口,短短几行代码就可以让图片动起来! 动画处理程 ...

  10. 腾讯云 Serverless 首发 1ms 计费粒度,立省 70% 费用

    云函数 SCF 采用按需付费的方式,并首次发布 1ms 计费粒度,真正实现按使用多少计算能力来计费. 云函数(Serverless Cloud Function,SCF)是腾讯云为企业和开发者们提供的 ...