[翻译]用神经网络做回归(Using Neural Networks With Regression)
本文英文原文出自这里, 这个博客里面的内容是Java开源, 分布式深度学习项目deeplearning4j的介绍学习文档.
简介:
一般来说, 神经网络常被用来做无监督学习, 分类, 以及回归. 也就是说, 神经网络可以帮助对未标记数据进行分组, 对数据进行分类, 或者在有监督训练之后输出连续的值. 典型的神经网络在分类方面的应用, 会在网络的最后一层使用逻辑回归分类器(之类)的将连续(continue)的值转换成为离散值如: 0/1, 比如, 给定一个人的身高, 体重, 以及年龄, 你可以给出它有心脏病或者没有心脏病的判断. 而真正的回归是将一组连续的输入映射到另一组连续的输出.
例如, 给定一座房子的房龄, 面积, 以及到一所好学校的距离, 你将对这座房子的价格进行预测: 这就是连续型输入映射到连续性输出. 这里面没有分类任务中的0/1, 而仅仅是将独立变量 x 映射到连续的输出y.
NN-Regression结构:
在上图中, x表示输入, 特征在网络前面的层进行前向传播, 很多x's与最后隐层的每个神经元相连接, 每个x将会乘上一个相应的权重w. 这些乘积之和再加上一个偏置, 被送到一个激活函数ReLU(=max(x,0)), 这个一个被广泛应用的激活函数, 它不会像sigmoid激活函数那样出现饱和. 对于每个隐层神经元, ReLUctant输入一个激活值a, 在网络的输出节点, 计算这些激活值之和作为最后的输出. 也就是说, 利用神经网络来做回归将有一个输出节点, 而且这个节点仅是对前面节点的激活值进行相加. 得到的 ŷ就是由你所有的x映射得到的独立变量.
训练过程:
为了进行网络的反向传播以及网络的训练, 你可以简单地使用网络的输出ŷ与真实值y进行比较, 通过调整权重和偏置使得网络的error达到最小. 可以使用Root-means-squared-error(RMSE)作为loss函数.
可以使用Deeplearning4j来建立多层神经网络, 在网络的最后增加一个输出层, 具体的代码参考如下:
//Create output layer
.layer()
.nIn($NumberOfInputFeatures)
.nOut()
.activationFunction('identity')
.lossFunction(LossFunctions.LossFunction.RMSE)
其中, nOut输出层的神经元数目, nIn为特征向量的维度, 在上图中, 这应该设置为4, activationFunction应该被设置为'identity'.
我的问题:
- 如果要输出多个值, 怎么做? 训练多个模型?
- 还有没有其他的方式做回归?
[翻译]用神经网络做回归(Using Neural Networks With Regression)的更多相关文章
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 论文翻译:2018_Source localization using deep neural networks in a shallow water environment
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...
- 深度神经网络入门教程Deep Neural Networks: A Getting Started Tutorial
Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
- 机器学习入门14 - 神经网络简介 (Introduction to Neural Networks)
原文链接:https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/ 神经 ...
- 强化学习之二:Q-Learning原理及表与神经网络的实现(Q-Learning with Tables and Neural Networks)
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译.(This article is my personal translation for the tutor ...
- 卷积神经网络(Convolutional Neural Networks)CNN
申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- 利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
随机推荐
- C++多线程编程入门之经典实例
多线程在编程中有相当重要的地位,我们在实际开发时或者找工作面试时总能遇到多线程的问题,对多线程的理解程度从一个侧面反映了程序员的编程水平. 其实C++语言本身并没有提供多线程机制,但Windows系统 ...
- OC之160728
NSData与NSMutableData:代表数据缓冲区有两个作用,将数据读入NSData和输出NSData数据 输出 将字符串写入指定文件 用NSFileManager:为创建,删除,移动,复制文件 ...
- C#实现右下角弹出窗口效果
/// <summary> /// 窗体动画函数 注意:要引用System.Runtime.InteropServices; /// </summary> /// <pa ...
- SAP web 开发 (第二篇 bsp 开发 mvc模式 Part1 )
Model-View-Controller 简称MVC. 简单的说就是把数据处理,显示,页面事件及处理过程分离开来,企业应用多数都采用这种方式,多层架构的优缺点不再多言,google一下啥都知道. 在 ...
- How to implement updatable view with NHibernate
see : http://msdn.microsoft.com/en-us/library/ms187956.aspx(The constrains of creation updatable vie ...
- leetcode52. N-Queens II
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- Linux下部署solrCloud
1. 准备工作 这里我只是把我的师兄教我的关于Solrcloud搭建的过程,以及需要注意的地方文档化了.感谢他教会了我很多. 1.机子IP 三台安装linux系统的机子的IP地址为: 172.24.1 ...
- linux与windows的不同
linux 严格区分大小写:linux 所有内容都以文件形式保存,包括用户和硬件:linux 不以文件后缀名来区分文件类型:但有一些便于管理员区分文件类型的约定俗称的后缀:windows下的程序不能直 ...
- ooize节点的属性控制
<workflow-app name="[WF-DEF-NAME]" xmlns="uri:oozie:workflow:[version]"> & ...
- LeetCode【217. Contains Duplicate】
Given an array of integers, find if the array contains any duplicates. Your function should return t ...