RBM Formula Deduction
Energy based Model
the probability distribution (softmax function):
\[p(x)=\frac{\exp(-E(x))}{\sum\limits_x{\exp(-E(x))}}\]
when there are hidden units,
\[P(x)=\sum\limits_h{P(x,h)}=\frac{1}{\sum_x\exp(-E(x))}\sum\limits_h{\exp(-E(x,h))}\]
now, we define the free energy function:
\[F(x)=-\log \sum\limits_h \exp(-E(x,h))\]
so that,
\[\sum\limits_h \exp(-E(x,h))=-\exp( F(x))\]
now, we rewrite the probability distribution for simpilification:
\[P(x)=\frac{\exp(-F(x))}{\sum_x{\exp(-F(x))}}\]
then, we define the overall cost function:
\[\mathcal{L}(\theta,D)=-\frac{1}{N}\sum\limits_{x^{(i)} \in D}{\log p(x^{(i)})}\]
we firstly calculate the parcial gradient of $\log p(x)$ with respect to $\theta$:
\[-\log P(x)=F(x) + \log\left(\sum\limits_x{\exp(-F(x))}\right)\]
\[-\frac{\partial \log P(x)}{\partial \theta}=\frac{\partial F(x)}{\partial \theta}-\sum\limits_{\hat x}{p(\hat x)\frac{\partial F(\hat x)}{\partial \theta}}\]
note that, the gradient contains two terms, which is called the positive phase and the negative phase. The first term increase the probability of training data, and the second term decrease the probability of samples generated by the model.
It's difficult to determine this gradient analytically, as we can't calculate $E_P[\frac{\partial F(x)}{\partial \theta}]$. So we might estimate the expectation using sample method.
we would like elements $\tilde x$ of $\mathcal{N}$ to be sampled according to $P(\tilde x)$, where $\mathcal{N}$ is called negative particles.
Given that, the gradient can then be written as:
\[ - \frac{\partial \log p(x)}{\partial \theta}\approx \frac{\partial F(x)}{\partial \theta} - \frac{1}{|\mathcal{N}|} \sum\limits_{\tilde x \in \mathcal{N}}\frac{\partial F(\tilde x)}{\partial \theta}\]
RBM

the energy function $E(v,h)$ of RBM is defined as :
\[E(v,h)=-b'v-c'h-h'Wv\]
where
- $W$ represents the weights connecting hidden and visble units.
- $b,c$ are bias terms of visible and hidden layers respectively.
RBM Formula Deduction的更多相关文章
- Logistic Regression - Formula Deduction
Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma( ...
- CBOW Model Formula Deduction
Paper Reference: word2vec Parameter Learning Explained 1. One-word context Model In our setting, the ...
- redmine computed custom field formula tips
项目中要用到Computed custom field插件,公式不知道怎么写,查了些资料,记录在这里. 1.http://apidock.com/ruby/Time/strftime 查看ruby的字 ...
- RBM阅读笔记
RBM包含两个层,可见层(visble layer)和隐藏层(hidden layer).神经元之间的连接具有以下特点:层内无连接,层间全连接.RBM可以看做是一个二分图(神经元当做顶点,神经元之间的 ...
- 2-3. Using Type Deduction
Type Deduction 发生在编译时期 可以对一般类型,自定义类型进行类型自推导 下面有两个例子: 1. Using auto with a class #include <iostrea ...
- salesforce 零基础开发入门学习(十五)salesforce中formula的使用(不含Date/Time)
本文参考官方的formula介绍PDF:https://resources.docs.salesforce.com/200/latest/en-us/sfdc/pdf/salesforce_usefu ...
- Hibernate @Formula 注解方式
1.Formula的作用 Formula的作用就是用一个查询语句动态的生成一个类的属性 就是一条select count(*)...构成的虚拟列,而不是存储在数据库里的一个字段.用比较标准的说法就是: ...
- Hibernate @Formula
在使用Hibernate时经常会遇到实体类某个字段存的是code值而非我们最终想要的中文具体显示的值, 如果使用Hibernate的一对一关联这种,一个属性还好说,但是如果一个实体类里有多个字段都是需 ...
- Deep Learning 15:RBM的学习
RBM是深度学习的核心,所以必须彻底清楚地理解RBM原理.推导及其训练方法 1.读学位论文“基于深度学习的人脸识别研究”: 对RBM.DBN的介绍比较详细,可以作为基础阅读,再去读英文论文. 2.RB ...
随机推荐
- OFFSET IN 使用举例
本文将结合具体实例阐述OFFSET IN的使用方法.注意:这是我第一次写OFFSET IN约束,本文仅供参考.阅读本文前需要了解时序收敛的基本概念,OFFSET IN和Period的相关知识,可先阅读 ...
- 你误解 .net 了吗?
我现在发现很多人对C#还存在很大的误解,例如C#是完全封闭的,C#不能跨平台,C#性能很差,C#不支持指针等等,持以上观点的人非常多,甚至最近看到的国内某机构对开发语言的统计中还写着C#不跨平台,不开 ...
- Predicting purchase behavior from social media-www2013
1.Information publication:www2013 author:Yongzheng Zhang 2.What 用社交媒体用户特征 预测用户购买商品类别(排序问题) 3.Dataset ...
- JavaScript鼠标拖拽特效及相关问题总结
#div1{width:200px;height:200px;background:red;position:absolute;} #div2{width:200px;height:200px;bac ...
- Java网络编程——UDP实例
UDPSendDemo import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamRea ...
- URL参数GB2312和UTF-8编码 自动识别
网上找的,以备后用. 直接上代码: public static string QueryStringDecode(string key) { HttpRequest Request = System. ...
- js中return的用法
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- SVN_限制注释长度
一.说明 svn服务器上每个项目都会有单独一个文件夹,文件夹下有一个hooks文件夹,可以在pre-commit添加内容限制注释输入 项目t1的下的hooks文件夹 二.操作步骤 注意:修改的 ...
- 【BZOJ 3049】【USACO2013 Jan】Island Travels BFS+状压DP
这是今天下午的互测题,只得了60多分 分析一下错因: $dis[i][j]$只记录了相邻的两个岛屿之间的距离,我一开始以为可以,后来$charge$提醒我有可能会出现来回走的情况,而状压转移就一次,无 ...
- 22 java当中的数组
class Test { public static void main(String args[]) { //数组的静态声明法 int arr[]={5,2,7,9,0}; //数组的动态声明法 i ...