A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第1章课程讲义下载(PDF)
Summary
- Matrix
A matrix is a rectangular array of elements. Matrix $A$ is denoted by $$A = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots&\vdots&\vdots \\ a_{m1}& \cdots & a_{mn} \end{bmatrix}$$ - Vector
A vector is a matrix that has only one row or one column. For example, $[1, 2, 3]$ is a row vector of dimension 3, and $\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}$ is a column vector of dimension 3. - Equal matrices
Two matrices $[A]$ and $[B]$ are equal if the size of $[A]$ and $[B]$ is the same, that is, the number of rows and columns of $[A]$ are same as that of $[B]$. And $a_{ij}=b_{ij}$ for all $i$ and $j$. - Zero matrix
A matrix whose all entries are zero is called a zero matrix, that is, $a_{ij}=0$ for all $i$ and $j$. For example, $$A = \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}$$ - Submatrix
If some rows or/and columns of a matrix $[A]$ are deleted (no rows or columns may be deleted), the remaining matrix is called a submatrix of $[A]$. For example, some of the submatrix of $\begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}$ are $$[1],\ [1, 2],\ \begin{bmatrix}1\\3\\5\end{bmatrix},\ \begin{bmatrix} 1 & 2\\3 & 4 \end{bmatrix},\ \begin{bmatrix} 1 & 2\\5 & 6 \end{bmatrix},\ \begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}.$$ - Square matrix
If the number of rows of a matrix is equal to the number of columns of a matrix, then the matrix is called a square matrix. For example, $$A = \begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$ - Diagonal matrix
A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, $a_{ij} = 0$ for $i\neq j$. For example, $$A=\begin{bmatrix}1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 5 \end{bmatrix}$$ - Identity matrix
A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, that is, $a_{ij}=0$, $i\neq j$ for all $i$, $j$ and $a_{ii}=1$ for all $i$. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$ - Upper triangular matrix
A $n\times n$ matrix for which $a_{ij} = 0$, $i > j$ for all $i$, $j$ is called an upper triangular matrix. That is, all the elements below the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9 \end{bmatrix}$$ - Lower triangular matrix
A $n\times n$ matrix for which $a_{ij} = 0$, $j > i$ for all $i$, $j$ is called a lower triangular matrix. That is, all the elements above the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 4 & 5 & 0\\ 0 & 8 & 9 \end{bmatrix}$$ - Tridiagonal matrix
A tridiagonal matrix is a square matrix in which all elements not on the following are zero: the major diagonal, the diagonal above the major diagonal, and the diagonal below the major diagonal. For example, $$A = \begin{bmatrix}1 & 2 & 0 & 0\\ 4 & 5 & 6 & 0\\ 0 & 0 & 7 & 8\\ 0& 0& -1& 2 \end{bmatrix}$$ Note that a non-square matrix also has diagonal entries. For an $m\times n$ matrix, the diagonal entries are $a_{11}$, $\cdots$, $a_{kk}$ where $k=\min\{m, n\}$. For example, $$A = \begin{bmatrix}1& 2\\ 3& 4 \\ 5& 6\end{bmatrix}$$ the diagonal elements are $a_{11}=1$ and $a_{22}=4$. - Diagonally dominant matrix
An $n\times n$ square matrix $[A]$ is a diagonal dominant matrix of $$|a_{ii}|\geq \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for $i = 1, \cdots, n$ and $$|a_{ii}| > \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for at least one $i$. That is, for each row, the absolute value of the diagonal element is greater than or equal to the sum of the absolute values of the rest of the elements of that row, and that the inequality is strictly greater than for at least one row. For example, $$A = \begin{bmatrix}15& 6& 7\\ 2& -4& -2\\ 3& 2& 6 \end{bmatrix}$$ is a diagonal dominant matrix since $$\begin{cases}|a_{11}| = 15 \geq |a_{12}| + |a_{13}| =13\\ |a_{22}|= 4 \geq |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 \geq |a_{31}| + |a_{32}| = 5 \end{cases}$$ and for at least one row, that is row 1 and row 3 in this case, the inequality is a strictly greater than inequality.
Selected Problems
1. Given $$A=\begin{bmatrix}6& 2& 3& 9\\ 0& 1& 2& 3\\ 0& 0& 4& 5\\ 0& 0& 0& 6 \end{bmatrix}$$ then $[A]$ is a ( ) matrix.
Solution:
This is an upper triangular matrix.
2. A square matrix $[A]$ is lower triangular if ( ).
Solution:
Lower triangular matrix: $a_{ij} = 0$ for $j > i$.
3. Given $$A = \begin{bmatrix} 12.3& -12.3& 20.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ B = \begin{bmatrix} 2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ then if $[C] = [A]\cdot[B]$, then $c_{31}= ( )$.
Solution:
$$c_{31} = \begin{bmatrix}10.3 & -11.3 &-12.3\end{bmatrix}\cdot \begin{bmatrix}2\\ -5\\ 11 \end{bmatrix}$$ $$= 10.3\times2 + (-11.3)\times(-5) + (-12.3)\times11= -58.2$$
4. The following system of equations has ( ) solutions. $$\begin{cases}x + y =2\\ 6x + 6y=12 \end{cases}$$
Solution:
$x=2-y$ where $y$ is arbitrary. Thus it has infinite solutions.
5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2003, Dude had ${1/6}^{th}$ of the market and Imac had ${5/6}^{th}$ of the market, what will be the share of Dude computers when the market becomes stable?
Solution:
Since we want when the market is stable, the market share should not change from year to year. Let $D$ and $M$ denote the market of Dude and Imac, respectively. Thus we have $$\begin{cases} D_n = {1\over5}D + {2\over3}M\\ M_n= {4\over5}D + {1\over3}M\end{cases}\Rightarrow \begin{bmatrix}D_n\\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3}\\ {4\over5}& {1\over3} \end{bmatrix}\cdot \begin{bmatrix}D\\ M\end{bmatrix}$$ $D_n = D$ and $M_n=M$ eventually. That is $$\begin{cases}{4\over5}D - {2\over3} M=0 \\ D+M=1\end{cases}\Rightarrow\begin{cases}D = {5\over11}\\ M= {6\over11} \end{cases}$$ Hence the final market share of Dude will be $\displaystyle{5\over11}$.
6. Three kids - Jim, Corey and David receive an inheritance of 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw's class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%, respectively. The total interest of all the three trusts combined at the end of the first year is 190,740.57. The equations to find the trust money of Jim (J), Corey (C) and David (D) in a matrix form is ( ).
Solution:
From the given conditions, we have $$\begin{cases}J + C +D =2253453\\ C=3D\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{cases}J + C +D =2253453\\ C-3D = 0\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& -3\\ 0.06& 0.08& 0.11 \end{bmatrix}\cdot \begin{bmatrix}J\\ C\\ D \end{bmatrix} = \begin{bmatrix}2253453\\ 0\\ 190740.57 \end{bmatrix}$$
7. Which of the following matrices are strictly diagonally dominant? $$A = \begin{bmatrix}15 &6 &7\\ 2 &-4 &2\\ 3& 2 &6 \end{bmatrix},\ B = \begin{bmatrix}5 &6 &7\\ 2 &-4 &2\\ 3& 2 &-5 \end{bmatrix},\ C = \begin{bmatrix}5&3 &2\\ 6 &-8 &2\\ 7& -5 &12 \end{bmatrix}. $$
Solution:
For $A$, $$\begin{cases}|a_{11}|=15 > |a_{12}| + |a_{13}| = 13\\ |a_{22}| = 4 = |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 > |a_{31}| + |a_{32}| = 5 \end{cases}$$ So it is strictly diagonal dominant. For $B$, $$|b_{11}| = 5 < |b_{12}| + |b_{13}| = 13$$ So it is not strictly diagonal dominant. For $C$, $$\begin{cases}|c_{11}|=5 = |c_{12}| + |c_{13}| = 5\\ |c_{22}| = 8 = |c_{21}| + |c_{23}| = 8\\ |c_{33}| = 12 = |c_{31}| + |c_{32}| = 12 \end{cases}$$ So it is not strictly diagonal dominant.
A.Kaw矩阵代数初步学习笔记 1. Introduction的更多相关文章
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- WPFProgressBarAndSlider随位置显示Value
先来一发图,有图有真相. 核心代码如下 ProgressBar添加一个textBlock 绑定Value并且位置绑定进度条的实际宽度 <Canvas Height="10" ...
- 继续node爬虫 — 百行代码自制自动AC机器人日解千题攻占HDOJ
前言 不说话,先猛戳 Ranklist 看我排名. 这是用 node 自动刷题大概半天的 "战绩",本文就来为大家简单讲解下如何用 node 做一个 "自动AC机&quo ...
- Web Worker 是什么鬼?
前言 前端工程师们一定有过这样的体验,当一个页面加载了大量的 js 文件时,用户界面可能会短暂地"冻结".这很好理解,因为 js 是单线程的语言.我们再走的极端点,一段 js 中出 ...
- 每一个C#开发者必须知道的13件事情
1.开发流程 程序的Bug与瑕疵往往出现于开发流程当中.只要对工具善加利用,就有助于在你发布程序之前便将问题发现,或避开这些问题. 标准化代码书写 标准化代码书写可以使代码更加易于维护,尤其是在代码由 ...
- 青瓷引擎使用心得——修改引擎的loading界面
一. 修改引擎的Loading界面之使用进度条显示1. 双击打开引擎包中的lib/qc-loading-debug.js,如下图所示: 2. 只需要修改qici.init函数即可改变loading界面 ...
- Putty SSH简单使用
本地的puttygen生出的秘钥,公钥传到服务器上连接会报错 Server refused our key. 一般我们建议都在服务器上生成秘钥,把私钥下载下来.加载到putty认证中 01.在服务器上 ...
- ElasticSearch入门系列(四)分布式初探
序言:ElasticSearch致力于隐藏分布式系统的复杂性,以下的操作都是在底层自动完成的: 将你的文档分区到不同的容器或者分片(shards),他们可以存在于一个或多个节点中 将分片均匀的分配到各 ...
- 0930MySQL中实现高性能高并发计数器方案(例如文章点击数)
转自http://www.jb51.net/article/56656.htm 这篇文章主要介绍了MySQL中实现高性能高并发计数器方案,本文中的计数器是指如文章的点击数.喜欢数.浏览次数等,需要的朋 ...
- 深入 理解vxlan
VXLAN RFC 文档 : https://tools.ietf.org/html/rfc7348 作为网络虚拟化的重要技术,VXLAN备受关注,该协议是如何运作的?如何通过数据与控制层面的分离实现 ...
- [转]Java_List元素的遍历和删除
原文地址:http://blog.csdn.net/insistgogo/article/details/19619645 1.创建一个ArrayList List<Integer> li ...