POJ 3185 The Water Bowls (高斯消元)
题意:翻译过来就是20个0或1的开关,每次可以改变相邻三个的状态,问最小改变多少次使得所有开关都置为0,题目保证此题有解。
题解:因为一定有解,所以我们可以正序逆序遍历两次求出较小值即可。当然这题也可以用万能的高斯消元来做。给出两种代码。
暴力代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int inf=0x3f3f3f;
int main()
{
int a[],b[];
while(scanf("%d",&a[])!=EOF)
{
for(int i=;i<;i++)
scanf("%d",&a[i]);
memcpy(b,a,sizeof(b));
int ans1=,ans2=;
for(int i=;i<;i++)
{
if(a[i]==)
{
if(i==)
{
ans1=inf;
break;
}
ans1++;
a[i+]^=;
a[i+]^=;
}
}
for(int i=;i>=;i--)
{
if(b[i]==)
{
if(i==)
{
ans2=inf;
break;
}
ans2++;
b[i-]^=;//注意这里是逆序 是i-1 不是i+1
b[i-]^=;//不要惯性思维
}
}
printf("%d\n",min(ans1,ans2));
}
return ;
}
高消代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <map>
#include <ctime>
using namespace std;
const int maxn=;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[maxn][maxn]; //增广矩阵
int x[maxn]; //解集
int free_x[maxn];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数
//返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int gauss()
{
int max_r,col,k;
free_num=;
for(k=,col=; k<equ&&col<var; k++,col++)
{
max_r=k;
for(int i=k+; i<equ; i++)
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
if(!a[max_r][col])
{
k--;
free_x[free_num++]=col;
continue;
}
if(max_r!=k)
for(int j=col; j<var+; j++)
swap(a[k][j],a[max_r][j]);
for(int i=k+; i<equ; i++)
{
if(a[i][col])
{
for(int j=col; j<var+; j++)
a[i][j]^=a[k][j];
}
}
}
for(int i=k; i<equ; i++)
if(a[i][col])
return -;
if(k<var) return var-k;
for(int i=var-; i>=; i--)
{
x[i]=a[i][var];
for(int j=i+; j<var; j++)
x[i]^=(a[i][j]&&x[j]);
}
return ;
}
int n;
void init()
{
memset(a,,sizeof(a));
memset(x,,sizeof(x));
equ=;
var=; //20个变元
for(int i=;i<;i++)
{
a[i][i]=;
if(i>) a[i-][i]=;
if(i<) a[i+][i]=;
}
}
int solve()
{
int t=gauss();
if(t==-)
{
return -;
}
else if(t==)
{
int ans=;
for(int i=; i<n*n; i++)
ans+=x[i];
return ans;
}
else
{
//枚举自由变元
int ans=0x3f3f3f3f;
int tot=(<<t);
for(int i=; i<tot; i++)
{
int cnt=;
for(int j=; j<t; j++)
{
if(i&(<<j)) //注意不是&&
{
x[free_x[j]]=;
cnt++;
}
else x[free_x[j]]=;
}
for(int j=var-t-; j>=; j--)
{
int idx;
for(idx=j; idx<var; idx++)
if(a[j][idx])
break;
x[idx]=a[j][var];
for(int l=idx+; l<var; l++)
if(a[j][l])
x[idx]^=x[l];
cnt+=x[idx];
}
ans=min(ans,cnt);
}
return ans;
}
}
int main()
{
n=;
init();
int data;
for(int i=;i<;i++)
{
scanf("%d",&data);
if(data) a[i][]=;
}
int ans=solve();
printf("%d\n",ans);
return ;
}
POJ 3185 The Water Bowls (高斯消元)的更多相关文章
- poj 3185 The Water Bowls 高斯消元枚举变元
题目链接 给一行0 1 的数, 翻转一个就会使他以及它左右两边的都变, 求最少多少次可以变成全0. 模板题. #include <iostream> #include <vector ...
- POJ 1681---Painter's Problem(高斯消元)
POJ 1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...
- POJ 3185 The Water Bowls 【一维开关问题 高斯消元】
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 3185 The Water Bowls(高斯消元-枚举变元个数)
题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...
- poj 3185 The Water Bowls
The Water Bowls 题意:给定20个01串(最终的状态),每个点变化时会影响左右点,问最终是20个0所需最少操作数? 水题..直接修改增广矩阵即可:看来最优解不是用高斯消元(若是有Gaus ...
- POJ 1830 开关问题(高斯消元)题解
思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...
- POJ 1222【异或高斯消元|二进制状态枚举】
题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...
- POJ 1830 开关问题(高斯消元求解的情况)
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8714 Accepted: 3424 Description ...
- POJ 1753 Flip Game(高斯消元+状压枚举)
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 45691 Accepted: 19590 Descr ...
随机推荐
- 【C语言入门教程】7.2 结构体数组的定义和引用
7.2 结构体数组的定义和引用 当需要使用大量的结构体变量时,可使用结构体定义数组,该数组包含与结构体相同的数据结构所组成的连续存储空间.如下例所示: struct student stu_a[50] ...
- Sublime Text 2 安装emmet插件和常用快捷键
一.先安装package control1.按Ctrl+`调出console,输入以下命令然后回车 import urllib2,os; pf='Package Control.sublime-pac ...
- Java中String和Int的相互转换
一.将字串 String 转换成整数 intA. 有2个方法:1). int i = Integer.parseInt([String]); 或 i = Integer.parseInt([Strin ...
- [转载]Jquery mobile 新手问题总汇
原文链接:http://www.wglong.com/main/artical!details?id=4 此文章将会持续更新,主要收录一些新手比较常见的问题. 欢迎 向我推荐比较典型的常见问题,我会记 ...
- 跟着百度学PHP[4]OOP面对对象编程-15-魔术方法__call方法
简而言之就是调用了一个类中没有的方法就会自动调用__call()方法, 该参数有两个必须的参数! 第一个参数:调用的不存在的方法的方法名. 第二个参数:调用不存在的方法的参数. 但是总的说回来,__c ...
- hiho #1151 : 骨牌覆盖问题·二 (递推,数论)
#1151 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? ...
- inner join ,left join ,right join 以及java时间转换
1.inner join ,left join 与 right join (from 百度知道) 例表aaid adate1 a12 a23 a3表bbid bdate1 ...
- log4j配置日志文件log4j.appender.R.File相对路径方法
方法一. 解决的办法自然是用相对路径代替绝对路径,其实log4j的FileAppender本身就有这样的机制,如:log4j.appender.logfile.File=${WORKDIR}/logs ...
- mysql互换表中两列数据方法
1.创建表及记录用于测试 ) unsigned ) ,) unsigned ,) unsigned NOT NULL COMMENT '现价', PRIMARY KEY (`id`) ) ENGINE ...
- CCF 模拟C 找最大矩形+输入输出外挂
http://115.28.138.223:81/view.page?opid=3 统计出连续的最长乘以当前高度,找最大即可 #include<iostream> #include< ...