Description

一个连通的无向图,有些点有A属性,有些点有B属性,可以同时具有.删掉某条边后,如果使得连通块中一些点不具有A,B属性的点,求这些边.

Sol

Tarjan求割边.

首先这些边一定在割边上,然后统计分开的两个连通块中,是否使一边不具有A,B属性的点.

这个只需要DFS一遍,统计该点子树中有多少a,多少b.

判断的时候就是如果 \(a[v]=0,b[v]=0,a[v]=k,b[v]=l\) 这些都合法.

Code

#include<cstdio>
#include<algorithm>
#include<utility>
#include<vector>
#include<iostream>
using namespace std; const int N = 100005;
#define mpr(a,b) make_pair(a,b) int n,m,k,l,cnt,tot,ans;
int a[N],b[N],iscut[N],e[N];
int dfsn[N],low[N],d[N],vis[N],out[N];
struct Edge{ int fr,to,id; }edge[N];
vector<Edge> g[N]; inline int in(int x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
inline void Add_Edge(int u,int v,int id){
edge[id]=(Edge){ u,v,id };
g[u].push_back((Edge){ u,v,id });
g[v].push_back((Edge){ v,u,id });
}
void Tarjan(int u,int fa){
dfsn[u]=low[u]=++cnt;
for(int i=0,lim=g[u].size(),v;i<lim;i++) if((v=g[u][i].to)!=fa){
if(!dfsn[v]){
Tarjan(v,u);
if(low[v]>dfsn[u]) iscut[g[u][i].id]=1;
low[u]=min(low[u],low[v]);
}else low[u]=min(low[u],dfsn[v]);
}
}
void DFS(int u,int fa){
vis[u]=1,d[u]=d[fa]+1;
for(int i=0,lim=g[u].size(),v;i<lim;i++) if(!vis[(v=g[u][i].to)]&&v!=fa){
DFS(v,u);a[u]+=a[v],b[u]+=b[v];
}
}
int main(){
// freopen("in.in","r",stdin);
n=in(),m=in(),k=in(),l=in();
for(int i=1;i<=k;i++) a[in()]=1;for(int i=1;i<=l;i++) b[in()]=1;
for(int i=1,u,v;i<=m;i++) u=in(),v=in(),Add_Edge(u,v,i);
for(int i=1;i<=n;i++) if(!dfsn[i]) Tarjan(i,0);
for(int i=1;i<=m;i++) if(iscut[i]) e[++tot]=i;
// for(int i=1;i<=tot;i++) cout<<e[i]<<" "<<edge[e[i]].fr<<" "<<edge[e[i]].to<<endl;
DFS(1,0);
for(int i=1;i<=tot;i++){
int u=edge[e[i]].fr,v=edge[e[i]].to;
if(d[v]<d[u]) swap(v,u);
if(a[v]==0||b[v]==0||a[v]==k||b[v]==l) out[++ans]=e[i];
}
printf("%d\n",ans);
for(int i=1;i<=ans;i++) printf("%d\n",out[i]);
return 0;
}

  

Vijos P1769 网络的关键边的更多相关文章

  1. 无线Ad-hoc网络的关键技术之路由(转)

    无线Ad-hoc网络的关键技术之路由http://network.51cto.com/art/201003/189719.htm

  2. 【vijos】1769 网络的关键边(割边)

    https://vijos.org/p/1769 啊,割边写挫了害得我交了那么多发... 本题多想想就出来了.. 首先求出割边,显然关键边就在割边上. 求完割边后,我们先从一个点dfs,维护A的点数和 ...

  3. 网络流量分析——NPMD关注IT运维、识别宕机和运行不佳进行性能优化。智能化分析是关键-主动发现业务运行异常。科来做APT相关的安全分析

    科来 做流量分析,同时也做了一些安全分析(偏APT)——参考其官网:http://www.colasoft.com.cn/cases-and-application/network-security- ...

  4. 前端学HTTP之网络基础

    × 目录 [1]网络 [2]OSI [3]TCP/IP 前面的话 HTTP协议对于前端工程师是非常重要的.我们在浏览网站时,访问的每一个WEB页面都需要使用HTTP协议实现.如果不了解HTTP协议,就 ...

  5. Neutron 理解 (1): Neutron 所实现的虚拟化网络 [How Netruon Virtualizes Network]

    学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...

  6. CentOS的网络配置(终端环境)

    在虚拟机中安装了Server版的CentOS,用于做Hadoop相关的实验.Server版的CentOS默认是没有桌面环境的,eth0的网络默认也没有开启,需要我们手动启动网络. 关键配置说明 网络和 ...

  7. CloudStack 物理网络架构

    原文地址:http://www.shapeblue.com/cloudstack/understanding-cloudstacks-physical-networking-architecture/ ...

  8. 再读TCP/IP网络7层协议

    随着工作的深入,每次读这7层协议,每次都有不同的理解. 分层名                                                               分层号   ...

  9. IPFS网络是如何运行的(p2p网络)

    IPFS是一个p2p网络,先来看看BitTorrent的p2p网络是如何工作的? 想要bt下载一个文件,首先你需要一个种子文件torrent,种子文件包含至少一个 Tracker(一台服务器地址)信息 ...

随机推荐

  1. Java反射机制<1>

    如果要通过一个对象找到一个类的名称,此时就需要用到反射机制(反射技术是用来做框架的,一般情况下Java私有对象不能被访问,但是暴力反射可以访问私有对象). 任何一个类如果没有明确地声明继承自哪个父类的 ...

  2. JQM弹出对话框

    <div data-role="page" id="pageone"> <div data-role="header"&g ...

  3. CSS样式优先级

    关于CSS样式优先级 一般情况下: [1位重要标志位] > [4位特殊性标志] > 声明先后顺序 !important > [ id > class > tag ] 使用 ...

  4. Nginx IP访问控制,只允许指定的IP地址访问

    Nginx可以进行IP访问控制,配置指定的IP地址访问服务器网站 今天领导提出一个新的业务需求,网站上线时让外部用户在上线时间段访问到的页面是维护页面,公司内部员工在上线时段可用正常访问公司的网站. ...

  5. canvas代替img渲染图片

    移动端用canvas代替img渲染图片,可以提高性能 var oImg = new Image(); oImg.src = url; oImg.onload = function(){ var cvs ...

  6. 使用idea开发Springmvc

    使用IntelliJ IDEA开发SpringMVC网站(一)开发环境 http://my.oschina.net/gaussik/blog/385697?fromerr=A4EKE0Ix idea1 ...

  7. Xcode常用技巧(2)-使Xcode在创建类时自动添加前缀

    在Xcode5之前的版本中,Xcode在新建项目时,会要求为一个类指定一个前缀,这样方便我们区分相同名字的类.而从Xcode6开始,由于Swift增加了命名空间的关系,Xcode在新建项目时,不会再要 ...

  8. 正则表达式基础---转自 Python正则表达式指南 前边

    1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...

  9. JSF的CommandXxx组件的update用法总结

    Update all forms 1 update="@(form)" Update first form 1 update="@(form:first)" U ...

  10. 关于动态URL地址设置静态形式

    动态URL地址:http://station.com/index.php?c=play&a=index&id=12345 静态URL地址:http://station.com/play ...