%第一列为 size of House(feet^2),第二列为 number of bedroom,第三列为 price of House
1 ,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
 1 %  Exercise 1: Linear regression with multiple variables

%% Initialization %% ================ Part 1: Feature Normalization ================ %% Clear and Close Figures
clear ; close all; clc fprintf('Loading data ...\n'); %% Load Data
data = load('ex1data2.txt');
X = data(:, :);
y = data(:, );
m = length(y); % Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(:,:) y(:,:)]'); fprintf('Program paused. Press enter to continue.\n');
pause; % Scale features and set them to zero mean
fprintf('Normalizing Features ...\n'); [X, mu, sigma] = featureNormalize(X);
 1 %featureNormalize(X)函数实现
function [X_norm, mu, sigma] = featureNormalize(X)
X_norm = X; % X是需要正规化的矩阵
mu = zeros(, size(X, )); % 生成 1x3 的全0矩阵
sigma = zeros(, size(X, )); % 同上 % Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful. % std,均方差,std(X,,)求列向量方差,std(X,,)求行向量方差。 mu = mean(X, ); %求每列的均值--即一种特征的所有样本的均值
sigma = std(X); %默认同std(X,,)求列向量方差
%fprintf('Debug....\n'); disp(sigma);
i = ;
len = size(X,); %行数
while i <= len,
%对每列的所有行上的样本进行normalization(归一化):(每列的所有行-该列均值)/(该列的标准差)
X_norm(:,i) = (X(:,i) - mu(,i)) / (sigma(,i));
i = i + ;
end
 1 % Add intercept term to X
2 X = [ones(m, 1) X]; %% ================ Part : Gradient Descent ================ % Instructions: We have provided you with the following starter
% code that runs gradient descent with a particular
% learning rate (alpha).
%
% Your task is to first make sure that your functions -
% computeCost and gradientDescent already work with
% this starter code and support multiple variables.
%
% After that, try running gradient descent with
% different values of alpha and see which one gives
% you the best result.
%
% Finally, you should complete the code at the end
% to predict the price of a sq-ft, br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
% graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
% fprintf('Running gradient descent ...\n'); % Choose some alpha value
alpha = 0.03; % learning rate - 可尝试0.,0.03,0.1,0.3...
num_iters = ; % 迭代次数 % Init Theta and Run Gradient Descent
theta = zeros(, ); % 3x1的全零矩阵
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
% gradientDescentMulti()函数实现
1 function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)

% Initialize some useful values
m = length(y); % number of training examples
feature_number = size(X,); % number of feature J_history = zeros(num_iters, );
temp = zeros(feature_number, ); for iter = : num_iters
predictions = X * theta;
sqrError = (predictions - y);
for i = : feature_number % Simultneously update theta(i) (同时更新)
temp(i) = theta(i) - (alpha / m) * sum(sqrError .* X(:,i));
end for j = : feature_number
theta(j) = temp(j);
end % Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
% % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
36 % disp(J_history(iter)); end end
 1 % Plot the convergence graph
figure;
plot(:numel(J_history), J_history, '-b', 'LineWidth', ); % '-b'--用蓝线绘制图像,线宽为2
xlabel('Number of iterations');
ylabel('Cost J'); % Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');
Tip:
To compare how dierent learning learning
rates aect convergence, it's helpful to plot J for several learning rates
on the same gure. In Octave/MATLAB, this can be done by perform-
ing gradi
ent descent multiple times with a `hold on' command between
plots. Concretely, if you've tried three dierent values of alpha (you should
probably try more values than this) and stored the costs in J1, J2 and
J3, you can use the following commands to plot them on the same gure:
plot(1:50, J1(1
:50), `b');
hold on;
plot(1:50, J2(1:50), `r');
plot(1:50, J3(1:50), `k');
The nal arguments `b', `r', and `k' specify dierent colors for the
plots.
 1 % 上面的Tip实现如: 可以添加本段代码进行比较 不同的learning rate
2 figure;
3 plot(1:100, J_history(1:100), '-b', 'LineWidth', 2);
4 xlabel('Number of iterations');
5 ylabel('Cost J');
6
7 % Compare learning rate
8 hold on;
9 alpha = 0.03;
10 theta = zeros(3, 1);
11 [theta, J_history1] = gradientDescentMulti(X, y, theta, alpha, num_iters);
12 plot(1:100, J_history1(1:100), 'r', 'LineWidth', 2);
13
14 hold on;
15 alpha = 0.1;
16 theta = zeros(3, 1);
17 [theta, J_history2] = gradientDescentMulti(X, y, theta, alpha, num_iters);
18 plot(1:100, J_history2(1:100), 'g', 'LineWidth', 2);
 1 % 利用梯度下降算法预测新值
price = [, X(:)] * theta; %利用矩阵乘法--预测多特征下的price % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using gradient descent):\n $%f\n'], price); fprintf('Program paused. Press enter to continue.\n');
pause;
 1 %% ================ Part 3: Normal Equations ================
2 %利用正规方程预测新值(Normal Equation)
fprintf('Solving with normal equations...\n'); %% Load Data
data = csvread('ex1data2.txt');
X = data(:, :);
y = data(:, );
m = length(y); % Add intercept term to X
X = [ones(m, ) X]; % Calculate the parameters from the normal equation
theta = normalEqn(X, y);
 % normalEquation的实现
1 function [theta] = normalEqn(X, y)

theta = zeros(size(X, ), ); % Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta. theta = pinv(X' * X) * X' * y; end
 1 % Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n'); % Estimate the price of a sq-ft, br house price = ;
price = [, X(:)] * theta; %利用正规方程预测新值 fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using normal equations):\n $%f\n'], price);

Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)的更多相关文章

  1. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  2. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  3. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  4. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  5. ML:多变量代价函数和梯度下降(Linear Regression with Multiple Variables)

    代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %C ...

  6. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  7. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

  8. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

  9. #Week3 Linear Regression with Multiple Variables

    一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训 ...

随机推荐

  1. BNR Android Demo学习笔记(一)——CrimeIntent

    开发环境:win7,Android Studio 1.2, 1.Model Crime,数据模型,每个Crime有一个UUID作为唯一标识. package tina.criminalintent; ...

  2. json不转化值是null的字段

    今天写东西,发现JSONObject.fromObject(),方法,会把value是null的字段,转为0或"",就自己写了一个方法,如果value是null就不转换 packa ...

  3. mysql常用语句总结

    1.创建语句 CREATE DATABASE database_name //创建数据库 //删表 DROP TABLE IF EXISTS `t_social_user_extend`; //建表C ...

  4. WebSocket帧数据 解码/转码

    数据从浏览器通过websocket发送给服务器的数据,是原始的帧数据,默认是被掩码处理过的,所以需要对其利用掩码进行解码. 从服务器发送给浏览器的数据是默认没有掩码处理的,只要符合一定结构就可以了.具 ...

  5. Android 带清除功能的输入框控件ClearEditText,仿IOS的输入框

    转载请注明出处http://blog.csdn.net/xiaanming/article/details/11066685 今天给大家带来一个很实用的小控件ClearEditText,就是在Andr ...

  6. 基于SSL协议的双向认证 - 数字证书 [2]

    1.1    数字证书 1.1.1   概念理解 一种文件的名称,例如一个机构或人的签名,能够证明这个机构或人的真实性.简而言之数字证书是一种网络上证明持有者身份的文件,同时还包括有公钥.证书是由国际 ...

  7. Mysql字段操作—增加字段、删除字段、修改字段名、修改字段类型(约束条件)

    1.增加字段:    alter table   tablename    add   new_field_id   type   not null default '0';     例:     a ...

  8. PYTHON 购物车程序

    product_list = [ ('iphone',50000), ('Mac Pro',9900), ('Bike',8000), ('Watch',160000), ('Coffee',600) ...

  9. Mysql报错Fatal error: Can't open and lock privilege tables: Table 'mysql.host' doesn't exist

    安装mysql后,启动时候没有启动成功,查看了下日志报错如下:---------------------------------------------1   可以:初始化mysql:mysql_in ...

  10. CCF 模拟D 动态规划

    http://115.28.138.223:81/view.page?opid=4 这道题写的我醉醉的,想建一棵指定深度的树最后统计满足条件的个数 居然没去考虑这样必然超时!!!代码写的也是醉了,把没 ...