最小生成树POJ3522 Slim Span[kruskal]
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 7594 | Accepted: 4029 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk(k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
copy一下MST的性质:
- (1)切割性质:(各边边权均不相同)一条边是连接图中某非全集非空集的点集合S和其补集中所有的边的最小边,那么这条边就在最小生成树中。
- 证明:回忆kruscal算法的过程,这条边是连接这两个集合的最小边,那么在枚举到这条边之前,这两个集合一定没有被合并
- (2)回路性质:(各边边权均不相同)图若有回路,那么回路中的最长边一定不在最小生成树中
- 证明:回路中至少一条边不在最少生成树中,假设最长边在最小生成树中,那么一定存在一条更小的边替代它。
- (3)最小瓶颈生成树:使最大边权值尽量小的生成树
- 最小生成树就是这么一棵树,因为kruscal算法的过程
- (4)最小瓶颈路:找u到v的一条路径满足最大边权值尽量小
- 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这条路径
- 如果只求一次,也可以用spfa稍作变形解决
本题求最苗条的生成树
可以发现对于一个最小边的权值,它对应的MST中的最大边的权值一定是最苗条的
枚举求就可以了
//
// main.cpp
// poj3522slim
//
// Created by Candy on 9/14/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,ans=INF;
struct edge{
int u,v,w;
bool operator<(const edge &rhs)const{return w<rhs.w;}
}e[N*N];
int p[N];
int find(int x){return x==p[x]?x:p[x]=find(p[x]);}
int kruskal(int st){
int ans=INF,cnt=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=st;i<=m;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans=e[i].w;
p[x]=y;
if(++cnt==n-) break;
}
}
if(cnt!=n-) return -;
return ans;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
if(n==&&m==) break;
ans=INF;
for(int i=;i<=m;i++){
e[i].u=read();e[i].v=read();e[i].w=read();
}
sort(e+,e++m);
for(int st=;st<=m-n+;st++){
int tmp=kruskal(st);
if(tmp!=-) ans=min(ans,tmp-e[st].w);
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}
最小生成树POJ3522 Slim Span[kruskal]的更多相关文章
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- POJ3522 Slim Span
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7462 Accepted: 3959 Descrip ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- 【kruscal】【最小生成树】poj3522 Slim Span
求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- Slim Span(Kruskal)
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Subm ...
随机推荐
- mysql行转列、列转行示例
最近在开发过程中遇到问题,需要将数据库中一张表信息进行行转列操作,再将每列(即每个字段)作为与其他表进行联表查询的字段进行显示. 借此机会,在网上查阅了相关方法,现总结出一种比较简单易懂的方法备用. ...
- 《Javascript高级程序设计》:创建对象
工厂模式 function createPerson(name,age, job){ var o = new Object(); o.name = name; o.age = age; o.job = ...
- JavaScript 数据类型判断
JavaScript 的数据类型分为两类:原始类型(基本类型)和对象类型(引用类型).原始类型包括数字.字符串和布尔值,另外有两个特殊的原始值:null 和 undefined,除此之外的都是对象.对 ...
- ionic + cordova 使用 cordova-plugin-crosswalk-webview 中的一些个坑
1) 在使用Web Audio API 时,无法使用 AudioContext.decodeAudioData() 对MP3文件进行解码 2)使用Cordova-plugin-weibosdk 插件时 ...
- 在Sharepoint 2013中,使用JS判断当前用户是否在某个组里面
使用Sharepoint客户端对象模型,判断当前用户是否在某个组里面. 在View 和 Edit List Item的时候使用,使用户编辑修改List Item的时候有权限的区分. 在Edit 页面加 ...
- JavaScriptSerializer序列化时间处理
JavaScriptSerializer序列化时间后会把时间序列化成N进制的鬼数据,于是查了下质料坐下记录 假设list = News List<Text>(){new Text(){id ...
- 【ios】使用Block对POST异步操作的简单封装
以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/3409721.html 一般情况下的POST异步操作需要实现以下 ...
- 解决Dialog 消失,输入法不消失的问题
前言:今天遇到一个奇怪的问题,Activity 里面弹出一个 dialog , 这个dialog里面有EditText . 问题:当 dialog 里面的输入法出现的时候,此时让diolog 消失,输 ...
- App Transport Security has blocked a cleartext
错误描述: App Transport Security has blocked a cleartext HTTP (http://) resource load since it is insecu ...
- 面试问题4:C语言预处理包括哪些
问题描述:C语言 预处理包括哪些操作 C语言的三种预处理包括:宏定义(#define).文件包含(#include).条件编译(#if.#else.#endif). 对于宏定义的介绍: 宏定义必须写在 ...