Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7594   Accepted: 4029

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk(k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source


copy一下MST的性质:
  • (1)切割性质:(各边边权均不相同)一条边是连接图中某非全集非空集的点集合S和其补集中所有的边的最小边,那么这条边就在最小生成树中。
  • 证明:回忆kruscal算法的过程,这条边是连接这两个集合的最小边,那么在枚举到这条边之前,这两个集合一定没有被合并
  • (2)回路性质:(各边边权均不相同)图若有回路,那么回路中的最长边一定不在最小生成树中
  • 证明:回路中至少一条边不在最少生成树中,假设最长边在最小生成树中,那么一定存在一条更小的边替代它。
  • (3)最小瓶颈生成树:使最大边权值尽量小的生成树
  • 最小生成树就是这么一棵树,因为kruscal算法的过程
  • (4)最小瓶颈路:找u到v的一条路径满足最大边权值尽量小
  • 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这条路径
  • 如果只求一次,也可以用spfa稍作变形解决

本题求最苗条的生成树

可以发现对于一个最小边的权值,它对应的MST中的最大边的权值一定是最苗条的

枚举求就可以了

//
// main.cpp
// poj3522slim
//
// Created by Candy on 9/14/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,ans=INF;
struct edge{
int u,v,w;
bool operator<(const edge &rhs)const{return w<rhs.w;}
}e[N*N];
int p[N];
int find(int x){return x==p[x]?x:p[x]=find(p[x]);}
int kruskal(int st){
int ans=INF,cnt=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=st;i<=m;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans=e[i].w;
p[x]=y;
if(++cnt==n-) break;
}
}
if(cnt!=n-) return -;
return ans;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
if(n==&&m==) break;
ans=INF;
for(int i=;i<=m;i++){
e[i].u=read();e[i].v=read();e[i].w=read();
}
sort(e+,e++m);
for(int st=;st<=m-n+;st++){
int tmp=kruskal(st);
if(tmp!=-) ans=min(ans,tmp-e[st].w);
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}

最小生成树POJ3522 Slim Span[kruskal]的更多相关文章

  1. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  2. POJ3522 Slim Span

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7462   Accepted: 3959 Descrip ...

  3. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  4. 【kruscal】【最小生成树】poj3522 Slim Span

    求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  7. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  8. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. PyInstaller编译python3时使用的详细参数介绍

    继续翻译中.... The syntax of the pyinstaller command is: pyinstaller [options] script [script ...] | spec ...

  2. 前端js文件合并三种方式

    最近在思考前端js文件该如何合并,当然不包括不能合并文件,而是我们能合并的文件,想了想应该也只有三种方式. 三个方式如下: 1. 一个大文件,所有js合并成一个大文件,所有页面都引用它. 2. 各个页 ...

  3. 在SharePoint 2013中显示“以其他用户身份登录”

    在我新建了SharePoint 2013的网站后, 发现界面与2010有一些不同,比如缺少了“以其他用户身份登录”,这给我的测试带来很大不便. 在找了一些国外网站后,终于找到了解决方法 第一步: 找到 ...

  4. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q19-Q20)

    Question 19 You are designing a custom SharePoint 2010 solution package. It will include a feature t ...

  5. 2016春招Android开发实习生(网易传媒)笔试

    一.单选题 1.下列不属于网络层协议的为 TCP IP IPX ICMP 2.关于activity的状态恢复,错误的是 onSaveInstanceState中,activity会自动收集恢复view ...

  6. java 中 return 的两种常见的用法

    一:return语句总是用在方法中,有两个作用: 一个是返回方法指定类型的值(这个值总是确定的), 一个是结束方法的执行(仅仅一个return语句). 二:实例1 -- 返回一个String priv ...

  7. Android 中的编码与解码

    前言:今天遇到一个问题,一个用户在登录的时候,出现登录失败.但是其他用户登录都是正常的,经过调试发现登录失败的用户的密码中有两个特殊字符: * .#  . 特殊符号在提交表单的时候,出现了编码不一样的 ...

  8. Facebook开源动画库 POP-小实例

    实例1:图片视图跟着手在屏幕上的点改变大小 - (void)viewDidLoad { [super viewDidLoad]; //添加手势 UIPanGestureRecognizer *gest ...

  9. Label自适应高度

    每次都逼我翻代码   这次干脆写博客里面算了 哈哈哈 CGSize maxSize = CGSizeMake(ScreenWith-30,NSIntegerMax); CGSize labelsize ...

  10. art.dialog.art 中,将子页面窗口中的值传递给父框架中

    artDialog.open.origin.document.getElementById('父元素ID').value=document.getElementById('子页面元素ID').valu ...