Pairs Forming LCM(素因子分解)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B 全题在文末。
题意:在a,b中(a,b<=n)(1 ≤ n ≤ 1014),有多少组(a,b) (a<b)满足lcm(a,b)==n;
先来看个知识点:
素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en
for i in range(1,n):
ei 从0取到ei的所有组合
必能包含所有n的因子。
现在取n的两个因子a,b
a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an
b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn
gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)
lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)
哈哈,又多了种求gcd,lcm的方法。
题解:
先对n素因子分解,n = p1 ^ e1 * p2 ^ e2 *..........*pk ^ ek,
lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pk ^ max(ak,bk)
所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek
当ai == ei时,bi可取 [0, ei] 中的所有数 有 ei+1 种情况,bi==ei时同理。
那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
除了 (n, n) 所有的情况都出现了两次 那么满足a<=b的有 (2*ei + 1)) / 2 + 1 个
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e7+5;
const int NN=1e6;
unsigned int prime[NN],cnt; //prime[N]会MLE
bool vis[N]; void is_prime()
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<N;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
for(int j=i+i;j<N;j+=i)
{
vis[j]=1;
}
}
}
} int main()
{
is_prime();
int t;
cin>>t;
for(int kase=1;kase<=t;kase++)
{
LL n;
cin>>n;
int ans=1;
for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==0)
{
int e=0;
while(n%prime[i]==0)
{
n/=prime[i];
e++;
}
ans*=(2*e+1);
}
}
if(n>1)
ans*=(2*1+1);
printf("Case %d: %d\n",kase,(ans+1)/2);
}
}
题目:
B - Pairs Forming LCM
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
Find the result of the following code:
long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
Output
For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
Sample Input
15
2
3
4
6
8
10
12
15
18
20
21
24
25
27
29
Sample Output
Case 1: 2
Case 2: 2
Case 3: 3
Case 4: 5
Case 5: 4
Case 6: 5
Case 7: 8
Case 8: 5
Case 9: 8
Case 10: 8
Case 11: 5
Case 12: 11
Case 13: 3
Case 14: 4
Case 15: 2
Pairs Forming LCM(素因子分解)的更多相关文章
- LightOJ 1236 - Pairs Forming LCM(素因子分解)
B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- Pairs Forming LCM
题目: B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB Description Find the result of ...
- 1236 - Pairs Forming LCM
1236 - Pairs Forming LCM Find the result of the following code: long long pairsFormLCM( int n ) { ...
- LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS Memor ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- Pairs Forming LCM LightOJ - 1236 素因子分解
Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; fo ...
- Pairs Forming LCM 在a,b中(a,b<=n)(1 ≤ n ≤ 10^14),有多少组(a,b) (a<b)满足lcm(a,b)==n; lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)
转自:http://www.cnblogs.com/shentr/p/5285407.html http://acm.hust.edu.cn/vjudge/contest/view.action?ci ...
- LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)
链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...
随机推荐
- 过去几个月出炉的30款最喜欢的 jQuery 插件
在这篇文章中,我们收集了一些在过去的几个月里最喜欢的 jQuery 插件.为了使您更容易搜索到自己喜欢的 jQuery 插件,我们已经对插件进行了分类: 页面布局插件,图片和视频插件,滑块和画廊,排版 ...
- Snort - 配置文件
Snort.conf 版本 2.9.8.3 编译可用选项: --enable-gre --enable-mpls --enable-targetbased --enable-ppm --enable- ...
- SVN源码泄露漏洞
SVN(subversion)是源代码版本管理软件,造成SVN源代码漏洞的主要原因是管理员操作不规范.“在使用SVN管理本地代码过程中,会自动生成一个名为.svn的隐藏文件夹,其中包含重要的源代码信息 ...
- git 删除远程源,新增加源
git remote remove origin git remote add origin git@XXXX
- 【代码笔记】iOS-判断是否是模拟机
一,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. ...
- Java 线程通信
线程通信用来保证线程协调运行,一般在做线程同步的时候才需要考虑线程通信的问题. 1.传统的线程通信 通常利用Objeclt类提供的三个方法: wait() 导致当前线程等待,并释放该同步监视器的锁定, ...
- IOS开发之代理的设计小技巧
1.关于代理对象的设计小技巧 在设计一个类,需要通过代理和协议来从外部获取需要的动态的数据.那么在这里设计使用代理会有两种方法. <第一种方法> 也是比较常见的: 在你设计的类中,声明一个 ...
- [译] MYSQL索引最佳实践
近日整理文档时发现多年前的这个文档还是蛮实用的,然后在网络搜索了一下并没有相关的译文,所以决定把它翻译过来,如有不当的地方请多包涵和指正.原文地址:https://www.percona.com/fi ...
- c#.net 使用NPOI导入导出标准Excel (asp.net winform csharp)
尝试过很多Excel导入导出方法,都不太理想,无意中逛到oschina时,发现了NPOI,无需Office COM组件且不依赖Office,顿时惊为天人,怀着无比激动的心情写下此文. 曾使用过的方法 ...
- jstack简单使用,定位死循环、线程阻塞、死锁等问题
当我们运行java程序时,发现程序不动,但又不知道是哪里出问题时,可以使用JDK自带的jstack工具去定位: 废话不说,直接上例子吧,在window平台上的: 死循环 写个死循环的程序如下: pac ...