Minimum Adjustment Cost
Given an integer array, adjust each integers so that the difference of every adjacent integers are not greater than a given number target.
If the array before adjustment is A, the array after adjustment is B, you should minimize the sum of |A[i]-B[i]|
Note: You can assume each number in the array is a positive integer and not greater than 100
.
Example
Given A = [1,4,2,3]
and target = 1
, one of the solutions is [2,3,2,3]
, the adjustment cost is 2
and it's minimal.
Return 2
.
分析:
首先,对于数组里的每个数,它最终的值不可能大于这个数组里最大的数(max)。所以,每个数的范围只能是从1到max. 如果第i个数取的值是j, 那么对于第i - 1个数,它能取的范围是不是只能是Math.max(1, j - target) 到 Math.min(j + target, max)。
如果用cost[i][j] 表示第i个数取p那个值时从第0个数到第i个数的total cost, 那么 cost[i][j] = Math.min(Math.abs(j - A.get(i)) + costs[i - 1][k]), Math.max(1, j - target) <= k <= Math.min(j + target, max) and j - A.get(i))
备注:最好自己创建一个二维costs表,自己安照下面的代码走一遍就明白了。
public class Solution {
/**
* cnblogs.com/beiyeqingteng/
*/
public int MinAdjustmentCost(ArrayList<Integer> A, int target) {
if (A == null || A.size() == ) return ;
int max = getMax(A);
int[][] costs = new int[A.size()][max + ]; for (int i = ; i < costs.length; i++) {
for (int j = ; j <= max; j++) {
costs[i][j] = Integer.MAX_VALUE;
if (i == ) {
// for the first number in the array, we assume it ranges from 1 to max;
costs[i][j] = Math.abs(j - A.get(i));
} else {
// for the number A.get(i), if we change it to j, then the minimum total cost
// is decided by Math.abs(j - A.get(i)) + costs[i - 1][k], and the range of
// k is from Math.max(1, j - target) to Math.min(j + target, max)
for (int k = Math.max(, j - target); k <= Math.min(j + target, max); k++) {
costs[i][j] = Math.min(costs[i][j], Math.abs(j - A.get(i)) + costs[i - ][k]);
}
}
}
} int min = Integer.MAX_VALUE;
for (int i = ; i < costs[].length; i++) {
min = Math.min(min, costs[costs.length - ][i]);
}
return min;
} private int getMax(ArrayList<Integer> A) {
int max = A.get();
for (int i = ; i < A.size(); i++) {
max = Math.max(max, A.get(i));
}
return max;
}
}
转载请注明出处: cnblogs.com/beiyeqingteng/
Minimum Adjustment Cost的更多相关文章
- Lintcode: Minimum Adjustment Cost
Given an integer array, adjust each integers so that the difference of every adjcent integers are no ...
- HDU 1385 Minimum Transport Cost (Dijstra 最短路)
Minimum Transport Cost http://acm.hdu.edu.cn/showproblem.php?pid=1385 Problem Description These are ...
- Minimum Transport Cost(floyd+二维数组记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- HDU1385 Minimum Transport Cost (Floyd)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost(floyd && 记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost (Floyd)
Minimum Transport CostTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- NSOJ Minimum Transport Cost
These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...
- ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)
题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...
- Minimum Transport Cost Floyd 输出最短路
These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...
随机推荐
- redis密码设置、访问权限控制等安全设置
redis作为一个高速数据库,在互联网上,必须有对应的安全机制来进行保护,方法有2,如下. 1.比较安全的办法是采用绑定IP的方式来进行控制. 请在redis.conf文件找到如下配置 # If y ...
- ubuntu系统下更新jdk版本
1. 添加软件源 sudo add-apt-repository ppa:webupd8team/java 2. 更新软件源 sudo apt-get update 3. 安装 jdk1.8 sudo ...
- ASP.NET 5与MVC 6中的新特性
差点忘了提一句,MVC 6中默认的渲染引擎Razor也将得到更新,以支持C# 6中的新语法.而Razor中的新特性还不只这一点. 在某些情况下,直接在Web页面中嵌入某些JSON数据的方式可能比向服务 ...
- linux压缩排除
tar -zcvf www/la.tar.gz --exclude=www/uploadfile --exclude=www/databases --exclude=www/web_logs www ...
- Request 传值 遇到的中文乱码问题
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="xxxx.aspx.cs&quo ...
- Access应用笔记<二>
关于access的应用笔记 20140822 基本完成access数据库的搭建,并且尝试了查重,不匹配项目查找,以及上传新数据等功能,表现良好. 记录一下目前研究出来的sql语句: 1)去除重复项 S ...
- firefox, chrome常见插件
firefox: firebug flagfox adblock autoproxy foxyproxy firegestures httpfox httprequester colorzilla j ...
- 如何自定义wordpress登录界面的Logo
每次登录wp后台都会看到wordpress的logo,会不会有点烦呢?想不想换个新的.自己设定一个呢?那么如何自定义wordpress登录界面的Logo呢? 把代码复制到当前主题的 functions ...
- 使用APPCAN开发移动应用APP心得
要想使用APPCAN开发移动应用,首先要弄明白什么是APPCAN,APPCAN都具有哪些功能. 1.什么是APPCAN? APPCAN是正益无线公司开发的一套Hybrid混合应用开发平台(AppCan ...
- iOS开发——网络篇——文件下载(NSMutableData、NSFileHandle、NSOutputStream)和上传、压缩和解压(三方框架ZipArchive),请求头和请求体格式,断点续传Range
一.小文件下载 NSURL *url = [NSURL URLWithString:@"http://120.25.226.186:32812/resources/images/minion ...