小日记:

1、今天新学的字体颜色,尽管不熟悉,但玩的666,卡星(开心)

╰( ̄▽ ̄)╮╰( ̄▽ ̄)╮╰( ̄▽ ̄)╮╰( ̄▽ ̄)╮╰( ̄▽ ̄)╮╰( ̄▽ ̄)╮

2、今天油腔滑调,谅解亿下

P2066 机器分配

题目

总公司拥有高效设备\(M\)台,准备分给下属的\(N\)个分公司。各分公司若获得这些设备,可以为国家提供一定的盈利。问:如何分配这\(M\)台设备才能使国家得到的盈利最大?

求出最大盈利值。其中\(M≤15,N≤10\)。

分配原则:每个公司有权获得任意数目的设备,但总台数不超过设备数M。

输入

第一行有两个数,第一个数是分公司数\(N\),第二个数是设备台数M。

接下来是一个\(N*M\)的矩阵,表明了第 \(I\)个公司分配 \(J\)台机器的盈利。

输出

第1行为最大盈利值

第2到第n为第i分公司分x台

\(P.S.\) 要求答案的字典序最小(为后文埋下伏笔)

样例

解析

设\(f[i][j]\)为前\(i\)个公司总共分配\(j\)台机器的最大利润。对于第\(i\)家子公司,我们可以给其分配的机器台数为:\(1-m\)

所以在该区间内枚举一个值k,状态转移方程即为:

\(f[i][j]=max(f[i-1][j-k],f[i][j])\)

那么,如何处理方案输出问题呢?

我们设\(path[i][j][h]\)对于前i个公司共分配\(j\)台机器的最优方案,第\(h\)个公司应分配多少台机器,当状态发生转移时,更新\(path\)数组即可。最终的答案就存放在\(path[n][m][i]\)之中。

代码如下

#include <bits/stdc++.h>
using namespace std;
int a[25][25];
int f[25][25];
int path[25][25][25];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++){
for (int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
for (int k=0;k<=j;k++){
if (f[i][j]<f[i-1][j-k]+a[i][k]){
f[i][j]=f[i-1][j-k]+a[i][k];
for (int l=1;l<i;l++)
path[i][j][l]=path[i-1][j-k][l];
path[i][j][i]=k;
}
}
printf("%d\n",f[n][m]);
for (int i=1;i<=n;i++)printf("%d %d\n",i,path[n][m][i]);
return 0;
}

巴特(But),you only have 90 分的好成绩

Why???

回到题面,我们会发现小小的一行字,人畜无害的鸭子(样子)

     >(' )
)/
/( <---鸭子
/ `----/
\ ~=- /——:

要求答案的字典序最小

顿时,我***********

辣么,如何使字典序最小呢?这需要我们倒着枚举。

设方程式表示的意思为“不给”第i家公司k台机器(k的值域同上)

注意:并不是\(f\)的意思

那么状态转移方程需改为:

f[i][j]=max(f[i][k],f[i-1][k]+graph[i][j-k]);

再根据这个,对于path数组的更新操作进行一些微调,即可得到满分程序了:

#include <bits/stdc++.h>
using namespace std;
int a[25][25];
int f[25][25];
int path[25][25][25];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++){
for (int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
for (int k=0;k<=j;k++){
if (f[i][j]<f[i-1][k]+a[i][j-k]){
f[i][j]=f[i-1][k]+a[i][j-k];
for (int l=1;l<i;l++)
path[i][j][l]=path[i-1][k][l];
path[i][j][i]=j-k;
}
}
printf("%d\n",f[n][m]);
for (int i=1;i<=n;i++)printf("%d %d\n",i,path[n][m][i]);
return 0;
}

P2066 机器分配 解析的更多相关文章

  1. Luogu P2066 机器分配(dp)

    P2066 机器分配 题面 题目背景 无 题目描述 总公司拥有高效设备 \(M\) 台,准备分给下属的 \(N\) 个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这 \(M\ ...

  2. 【线型DP】洛谷P2066 机器分配

    [线型DP]洛谷P2066 机器分配 标签(空格分隔): 线型DP [题目] 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配 ...

  3. 洛谷 p2066 机器分配(资源型)

    机器分配 https://www.luogu.org/problem/show?pid=2066 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定 ...

  4. P2066 机器分配 DP

    题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M≤15,N≤10.分 ...

  5. [洛谷P2066]机器分配

    题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M≤15,N≤10.分 ...

  6. luogu P2066 机器分配[背包dp+方案输出]

    题目背景 无 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M≤15 ...

  7. P2066 机器分配

    题目背景 无 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M≤15 ...

  8. 洛谷 P2066 机器分配

     题目背景 Background 无  题目描述 Description 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能 ...

  9. P2066 机器分配 (DP+DP输出)

    题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M≤15,N≤10.分 ...

随机推荐

  1. docker中Jenkins启动无法安装插件,版本过低

    一.问题现象: 使用docker启动jenkins,在jenkins启动后却无法安装jenkins的插件,一直提示安装失败且从log看到提示信息显示为需要升级jenkins的版本 二.原因分析: 在使 ...

  2. Verilog的数据流、行为、结构化与RTL级描述

    Verilog语言可以有多种方式来描述硬件,同时,使用这些描述方式,又可以在多个抽象层次上设计硬件,这是Verilog语言的重要特征. 在Verilog语言中,有以下3种最基本的描述方式: 数据流描述 ...

  3. Codeforces1575D

    思路分析 此题采用dfs,注意X选中了之后所有的X值相同,所以需要一个flag来存储X的值. 注意前导0要单独讨论,然后就是当'X'或者'_'在第一位时不能选0,其它位可以选0 - 9 任意一个数. ...

  4. [对对子队]会议记录5.27(Scrum Meeting12)

    今天已完成的工作 朱俊豪 ​ 工作内容:寻找电池模型和BGM,修改关卡选择场景 ​ 相关issue:优化初步导出版本 ​ 相关签入:perf:地图界面优化 feat:更新系列资源(星星,大电池) 何瑞 ...

  5. 2021.10.26考试总结[冲刺NOIP模拟16]

    T1 树上的数 \(DFS\)一遍.结构体存边好像更快? \(code:\) T1 #include<bits/stdc++.h> using namespace std; namespa ...

  6. Machine learning (7-Regularization)

    1.The Problem of Over-fitting 2.Cost Function 3.Regularized Linear Regression 4.Regularized Logistic ...

  7. Python课程笔记(三)

    1.python定义类.创建对象 class Myclass: # 定义Myclass类 def sum(self,x,y): self.x = x self.y = y return self.x+ ...

  8. 在Vue前端界面中,几种数据表格的展示处理,以及表格编辑录入处理操作。

    在Vue前端项目中,我这里主要是基于Vue+Element的开发,大多数情况下,我们利用Element的表格组件就可以满足大多数情况的要求,本篇随笔针对表格的展示和编辑处理,综合性的介绍几款表格组件的 ...

  9. Java:检查异常与未检查异常

    一.异常的介绍 Throwable 是 Java 中所有错误和异常的超类.Java 虚拟机仅抛出属于此类(或其子类之一)的实例对象,或者是 throw 语句也可以抛出该对象.同样,catch 子句中的 ...

  10. jdk8下载与安装教程

     jdk8下载与安装教程下载有两种方式 一.网盘下载网盘下载链接 pan.baidu.com/s/1VQAwHS6WDjemDnKDnPIvww 提取码:f5tv二.官网下载如果想自己一步步研究亲自实 ...