不断删除重边,然后将两个点的边集启发式合并(要考虑到两棵树),合并时发现重边就加入队列,最后判断是否全部删完即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 set<int>s[N];
5 map<int,int>mat[N];
6 queue<pair<int,int> >q;
7 int n,x,y,ans,f[N];
8 int find(int k){
9 if (k==f[k])return k;
10 return f[k]=find(f[k]);
11 }
12 void add(int x,int y){
13 s[x].insert(y);
14 s[y].insert(x);
15 if (x>y)swap(x,y);
16 if (++mat[x][y]==2){
17 q.push(make_pair(x,y));
18 mat[x][y]=0;
19 }
20 }
21 void merge(int x,int y){
22 if (s[x].size()>s[y].size())swap(x,y);
23 f[x]=y;
24 for(set<int>::iterator it=s[x].begin();it!=s[x].end();it++){
25 int z=find(*it);
26 if (y==z)continue;
27 add(y,z);
28 s[z].erase(x);
29 }
30 s[x].clear();
31 }
32 int main(){
33 scanf("%d",&n);
34 for(int i=1;i<=n;i++)f[i]=i;
35 for(int i=1;i<2*n-1;i++){
36 scanf("%d%d",&x,&y);
37 add(x,y);
38 }
39 while (!q.empty()){
40 ans++;
41 merge(find(q.front().first),find(q.front().second));
42 q.pop();
43 }
44 if (ans==n-1)printf("YES");
45 else printf("NO");
46 }

[atAGC014E]Blue and Red Tree的更多相关文章

  1. AT2377 Blue and Red Tree

    AT2377 Blue and Red Tree 法一:正推 红色的边在蓝色的树上覆盖,一定每次选择的是覆盖次数为1的边的覆盖这条边的红色边连出来 覆盖次数可以树剖找到 这条红色边,可以开始的时候每个 ...

  2. AGC014E Blue and Red Tree

    题意 There is a tree with \(N\) vertices numbered \(1\) through \(N\). The \(i\)-th of the \(N−1\) edg ...

  3. 【AGC014E】Blue and Red Tree 并查集 启发式合并

    题目描述 有一棵\(n\)个点的树,最开始所有边都是蓝边.每次你可以选择一条全是蓝边的路径,删掉其中一条,再把这两个端点之间连一条红边.再给你一棵树,这棵树的所有边都是红边,问你最终能不能把原来的树变 ...

  4. AGC 014 E Blue and Red Tree [树链剖分]

    传送门 思路 官方题解是倒推,这里提供一种正推的做法. 不知道你们是怎么想到倒推的--感觉正推更好想啊QwQ就是不好码 把每一条红边,将其转化为蓝树上的一条路径.为了连这条红边,需要保证这条路径仍然完 ...

  5. AGC 014E.Blue and Red Tree(思路 启发式合并)

    题目链接 \(Description\) 给定两棵\(n\)个点的树,分别是由\(n-1\)条蓝边和\(n-1\)条红边组成的树.求\(n-1\)次操作后,能否把蓝树变成红树. 每次操作是,选择当前树 ...

  6. 【AGC014E】Blue and Red Tree

    Description 给定一棵\(n\)个节点的蓝边树,再给定一棵\(n\)个节点的红边树.请通过若干次操作将蓝树变成红树.操作要求和过程如下: 1.选定一条边全为蓝色的路径: 2.将路径上的一条蓝 ...

  7. [AT2377] [agc014_e] Blue and Red Tree

    题目链接 AtCoder:https://agc014.contest.atcoder.jp/tasks/agc014_e 洛谷:https://www.luogu.org/problemnew/sh ...

  8. AtCoder Grand Contest 014 E:Blue and Red Tree

    题目传送门:https://agc014.contest.atcoder.jp/tasks/agc014_e 题目翻译 有一棵有\(N\)个点的树,初始时每条边都是蓝色的,每次你可以选择一条由蓝色边构 ...

  9. AtCoder AGC014E Blue and Red Tree (启发式合并)

    题目链接 https://atcoder.jp/contests/agc014/tasks/agc014_e 题解 完了考场上树剖做法都没想到是不是可以退役了... 首先有一个巨难写的据说是\(O(n ...

随机推荐

  1. maven配置下载包 解决SunCertPathBuilderException:unable to find valid certification path to requested target

    ​ 解决 『SunCertPathBuilderException:unable to find valid certification path to requested target』 问题 ★ ...

  2. Java正则中"\\\\"表示普通反斜杠

    Java中"\"用于转义字符,"\\"表示普通无转义功能的反斜杠. 如果将字符串当做正则表达式来解析,那么"\\"也有了特殊意义,它与其后的 ...

  3. 力扣 - 剑指 Offer 53 - II. 0~n-1中缺失的数字

    题目 剑指 Offer 53 - II. 0-n-1中缺失的数字 思路1 排序数组找数字使用二分法 通过题目,我们可以得到一个规律: 如果数组的索引值和该位置的值相等,说明还未缺失数字 一旦不相等了, ...

  4. allegro查看线宽的方法

  5. 计算机网络传输层之TCP拥塞控制(慢开始与拥塞避免、快重传和快恢复)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105532044 学习课程:<2019王道考研计算机网络> 学习目的 ...

  6. Java并发:重入锁 ReentrantLock(二)

    一.理解锁的实现原理 1. 用wait()去实现一个lock方法,wait()要和synchronized同步关键字一起去使用的,直接使用wait方法会直接报IllegalMonitorStateEx ...

  7. 在Ubuntu下安装Solr

    使用wget命令去官网下载solr的压缩包. 1 wget https://mirrors.bfsu.edu.cn/apache/lucene/solr/8.6.3/solr-8.6.3.tgz 使用 ...

  8. Spring源码解读(二):Spring AOP

    一.AOP介绍 面向方面编程(AOP)通过提供另一种思考程序结构的方式来补充面向对象编程(OOP).OOP中模块化的关键单元是类,而在AOP中,模块化单元是方面.方面实现了诸如跨越多种类型和对象的事务 ...

  9. 手把手教你学Dapr - 3. 使用Dapr运行第一个.Net程序

    上一篇:手把手教你学Dapr - 2. 必须知道的概念 注意: 文章中提到的命令行工具即是Windows Terminal/PowerShell/cmd其中的一个,推荐使用Windows Termin ...

  10. Django(72)Django认证系统库--djoser

    djoser是什么?   作用:Django认证系统的REST实现.djoser库提供了一组Django Rest Framework视图,用于处理注册.登录.注销.密码重置和帐户激活等基本操作.它适 ...