DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TORCH.AUTOGRAD
torch.autograd
是PyTorch的自动微分引擎,用以推动神经网络训练。在本节,你将会对autograd如何帮助神经网络训练的概念有所理解。
背景
神经网络(NNs)是在输入数据上执行的嵌套函数的集合。这些函数由参数(权重、偏置)定义,并在PyTorch中保存于tensors中。
训练NN需要两个步骤:
- 前向传播:在前向传播中(forward prop),神经网络作出关于正确输出的最佳预测。它使输入数据经过每一个函数来作出预测。
- 反向传播:在反向传播中(backprop),神经网络根据其预测中的误差来调整其参数,它通过从输出向后遍历,收集关于函数参数的误差的导数(梯度),并使用梯度下降优化参数。有关更多关于反向传播的细节,参见video from 3Blue1Brownvideo from 3Blue1Brown。
在PyTorch中的使用
让我们来看一下单个训练步骤。对于这个例子,我们从 torchvision
加载了一个预训练的resnet18模型。我们创建了一个随机数据tensor,用以表示一个3通道图片,其高和宽均为64,而其对应的 label
初始化为某一随机值。
import torch, torchvision
model = torchvision.models.resnet18(pretrained=True)
data = torch.rand(1, 3, 64, 64)
labels = torch.rand(1, 1000)
接下来,我们将数据输入模型,经过模型的每一层最后作出预测。这是前向过程。
prediction = model(data) # forward pass
我们使用模型的预测及其对应的标签计算误差(loss
)。下一步是通过网络反向传播误差。当在误差tensor上调用.backward()
时,反向传播开始。然后,Autograd计算针对每一个模型参数的梯度,并将其保存在参数的 .grad
属性中。
loss = (prediction - labels).sum()
loss.backward() # backward pass
接下来,我们加载一个优化器,在此案例中是SGD,学习率是0.01,动量参数(momentum)是0.9。我们在优化器中注册所有的模型参数。
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
最后,我们调用 .step()
启动梯度下降。优化器会通过保存在 .grad
的参数梯度调整所有参数。
optim.step() # gradient descent
此时,你已拥有训练神经网络所需的一切。以下部分详细介绍了autograd的工作原理 - 可随意跳过。
Autograd中的微分
让我们来看一下 autograd
是如何收集梯度的。创建两个tensor a
和 b
,并且 requires_grad=True
。这向 autograd
发出信号,跟踪在它们上执行的每一个操作。
import torch
a = torch.tensor([2., 3.], requires_grad=True)
b = torch.tensor([6., 4.], requires_grad=True)
由 a
和 b
创建tensor Q
。
\]
Q = 3*a**2 - b**2
假设 a
和 b
是一个神经网络的参数,Q
是误差。在NN训练中,求解关于参数的梯度,即:
\]
\]
当我们在 Q
上调用 .backward()
,autograd计算以上梯度并保存在对应tensor的 .grad
属性中。
Q.backward()
是一个向量,因此我们需要在 Q.backward()
中显示地传递一个 gradient
参数。gradient
是一个和 Q
相同形状的tensor,它表示Q关于其本身的梯度,即:
\]
等效地,我们还可以将Q聚合为一个标量,并隐式的向后调用,如 Q.sum().backward()
external_grad = torch.tensor([1., 1.])
Q.backward(gradient=external_grad)
梯度现在杯保存在 a.grad
、b.grad
中
## 检查收集的梯度是否正确
print(9*a**2 == a.grad)
print(-2*b == b.grad)
输出:
tensor([True, True])
tensor([Ture, True])
选读 - 使用 autograd
进行矢量微分
计算图
从概念上来说,autograd在一个由Function对象组成的有向无环图(DAG)中记录了数据(tensors)和所有执行的操作(连同由此产生的新tensors)。在DAG中,叶节点是输入tensors,根节点是输出tensors。通过从根节点到叶节点跟踪此图,你可以使用链式法则自动计算梯度。
在前向过程中,autograd同时进行两件事:
- 执行请求的操作计算结果tensor,
- 在DAG中保留操作的 gradient function。
在DAG根节点处调用 .backward()
时启动反向过程。然后autograd
:
- 由每个
.grad_fn
计算梯度, - 将梯度累积在其对应tensor的
.grad
属性中, - 使用链式法则,将梯度一直传播到叶节点。
下图是以上例子中DAG的可视化表示。在该图中,箭头表示前向过程的方向。节点表示在前向过程中每一个操作的backward functions。蓝色叶节点表示我们的tensor a
和 b
。
注意:DAGs在PyTorch中是动态的。需要重点注意的是:DAG是从头开始重新创建的,在每次 .backward
调用时,autograd开始填充一个新图。这正是在模型中允许你使用控制流语句的原因。如果需要,你可以在每次迭代中更改形状、大小和操作。
从DAG中排除
torch.autograd
跟踪所有 requires_grad=True
的tensor上的操作。对于不要求计算梯度的tensor,requires_grad=False
,并将其从梯度计算DAG中排除。
当一个操作就算只有一个输入tensor有 requires_grad=True
,其输出的tensor仍然要计算梯度。
x = torch.rand(5, 5)
y = torch.rand(5, 5)
z = torch.rand((5, 5), requires_grad=True)
a = x + y
print(f"Does 'a' require gradients? : {a.requires_grad}")
b = x + z
print(f"Does 'b' require gradients? : {b.requires_grad}")
输出:
Does `a` require gradients? : False
Does `b` require gradients?: True
在神经网络中,不计算梯度的参数通常成为冻结参数。如果你事先知道不需要这些参数的梯度,那冻结模型的一部分很有用(这通过减少autograd计算量提供了一些性能优势)。
从DAG中排除的另一个重要的常见用法是finetuning a pretrained network
在finetune中,我们冻结模型的大部分参数,并且通常只修改分类层以对新的标签作出预测。让我们通过一个小例子来演示这一点。像之前一样,我们加载一个预训练resnet18模型,并且冻结所有参数。
from torch import nn, optim
model = torchvision.models.resnet18(pretrained=True)
# 冻结网络中的所有参数
for param in model.parameters():
param.requires_grad = False
假设我们要在一个10标签数据集上微调模型。在resnet中,分类层是最后的线性层 model.fc
。我们可以简单地用一个新的线性层(默认情况下未冻结)替换它作为我们的分类器。
model.fc = nn.Linear(512, 10)
模型中除了 model.fc
的所有参数均被冻结。需要计算梯度的参数仅仅是 model.fc
的权重和偏置
# 仅优化分类层
optimizer = optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
注意,尽管我们在优化器中注册了所有参数,但是计算梯度(在梯度下降中更新)的参数仅是分类层的权重和偏置。
The same exclusionary functionality is available as a context manager in torch.no_grad().
DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TORCH.AUTOGRAD的更多相关文章
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TENSORS
Tensor是一种特殊的数据结构,非常类似于数组和矩阵.在PyTorch中,我们使用tensor编码模型的输入和输出,以及模型的参数. Tensor类似于Numpy的数组,除了tensor可以在GPU ...
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | NEURAL NETWORKS
神经网络可以使用 torch.nn包构建. 现在你已经对autograd有所了解,nn依赖 autograd 定义模型并对其求微分.nn.Module 包括层,和一个返回 output 的方法 - f ...
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TRAINING A CLASSIFIER
你已经知道怎样定义神经网络,计算损失和更新网络权重.现在你可能会想, 那么,数据呢? 通常,当你需要解决有关图像.文本或音频数据的问题,你可以使用python标准库加载数据并转换为numpy arra ...
- Deep learning with PyTorch: A 60 minute blitz _note(1) Tensors
Tensors 1. construst matrix 2. addition 3. slice from __future__ import print_function import torch ...
- Summary on deep learning framework --- PyTorch
Summary on deep learning framework --- PyTorch Updated on 2018-07-22 21:25:42 import osos.environ[ ...
- Neural Network Programming - Deep Learning with PyTorch with deeplizard.
PyTorch Prerequisites - Syllabus for Neural Network Programming Series PyTorch先决条件 - 神经网络编程系列教学大纲 每个 ...
- PyTorch 介绍 | AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD
训练神经网络时,最常用的算法就是反向传播.在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整. 为了计算这些梯度,PyTorch内置了名为 torch.autograd 的微分引擎. ...
- Neural Network Programming - Deep Learning with PyTorch - YouTube
百度云链接: 链接:https://pan.baidu.com/s/1xU-CxXGCvV6o5Sksryj3fA 提取码:gawn
- (zhuan) Where can I start with Deep Learning?
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...
随机推荐
- python3 5月26日 time模块常用时间转换 &datetime()模块学习 random()
import time 获取当前时间: 指定字符串格式:time.strftime("%Y-%m-%d %H:%M:%S") 当前时间戳:time.time() 当前时间元组格式 ...
- webservice注意事项
1.private static final QName PORT_NAME = new QName("http://server.helloworld.cxf.demo/",&q ...
- 优雅的按键模块-----Multi-button
优雅的按键模块-----Multi-button 在我们日常开发和使用的过程中常常使用了一些按键,利用按键实现不同的功能,比如长按,短按,双击等等.但是每次都是采用标志等等来实现信息的读取,是否有 ...
- JAVA在JDK1.8中Stream流的使用
Stream流的map使用 转换大写 List<String> list3 = Arrays.asList("zhangSan", "liSi", ...
- Vue父子组件通信(父级向子级传递数据、子级向父级传递数据、Vue父子组件存储到data数据的访问)
Vue父子组件通信(父级向子级传递数据.子级向父级传递数据.Vue父子组件存储到data数据的访问) 一.父级向子级传递数据[Prop]: ● Prop:子组件在自身标签上,使用自定义的属性来接收外界 ...
- Qt的VS插件下载地址
地址 https://download.qt.io/official_releases/vsaddin/2.4.3/
- CMake判断操作系统和编译器
判断操作系统 IF (CMAKE_SYSTEM_NAME MATCHES "Linux") ELSEIF (CMAKE_SYSTEM_NAME MATCHES "Wind ...
- java源码——计算立体图形的表面积和体积
计算球,圆柱,圆锥的表面积和体积. 利用接口实现. 上代码. Contants.java 常量存储类 package com.fuxuemingzhu.solidgraphics.contants; ...
- Abelian Period
Abelian Period Accepts: 288 Submissions: 984 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 26 ...
- MySQL 尽量避免使用 TIMESTAMP
MySQL 中常见的时间类型有三种DATE, DATETIME和 TIMESTAMP,其中DATE类型用于表示日期,但是不会包含时间,格式为YYYY-MM-DD,而DATETIME和TIMESTAMP ...