poj 折半搜索
poj2549 Sumsets
题目链接: http://poj.org/problem?id=2549
题意:给你一个含有n(n<=1000)个数的数列,问这个数列中是否存在四个不同的数a,b,c,d,使a+b+c=d;若存在则输出最大的d
思路:完全暴力的话O(n^4),会T,可以考虑双向搜索,公式变形为a+b=d-c;分别枚举a+b和c-d,将值和下标存在结构体中,再二分查找即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<set>
#include<vector>
#include<map>
using namespace std;
struct Z{
int s;
int x;
int y;
bool operator < (const Z& b)const { return s < b.s; }
}z[1000005],m[1000005];
int n,a[1005];
bool ok(Z& a, Z& b) {
return a.x != b.x && a.y != b.y && a.x != b.y && a.y != b.x;
}
int main(){
while((cin>>n)&&n!=0){
int ans=-536870912;
for(int i=0;i<n;i++)
cin>>a[i];
sort(a,a+n);
int k=0;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++){
z[k].s=a[i]+a[j];
z[k].x=i;
z[k++].y=j;
}
int l=0;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++){
m[l].s=a[i]-a[j];
m[l].x=i;
m[l++].y=j;
m[l].s=a[j]-a[i];
m[l].x=j;
m[l++].y=i;
}
sort(z,z+k);
for(int i=0;i<l;i++){
int d=lower_bound(z,z+k,m[i])-z;
if(ok(z[d],m[i])&&z[d].s==m[i].s)
ans=max(ans,z[d].s+a[m[i].y]);
}
if(ans!=-536870912)
cout<<ans<<endl;
else cout<<"no solution"<<endl;
}
}
poj3977 Subset
题目链接: http://poj.org/problem?id=3977
题意:给你一个含n(n<=35)个数的数组,让你在数组中选出一个非空子集,使其元素和的绝对值最小,输出子集元素的个数以及元素和的绝对值,若两个子集元素和相等,输出元素个数小的那个。
思路:如果直接暴力枚举,复杂度O(2^n),n为35时会超时,故可以考虑折半枚举,利用二进制将和以及元素个数存在两个结构体数组中,先预判 两个结构体是否满足题意,再将其中一个元素和取相反数后排序,因为总元素和越接近零越好,再二分查找即可,用lower_bound时考虑查找到的下标和他前一个下标,比较元素和以及元素个数,不断更新即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
struct Z{
long long int x;
int y;
bool operator < (const Z& b)const
{
if(x!=b.x)
return x < b.x;
return y<b.y;
}
}a[300005],b[300005];
long long int c[40];
long long int abs1(long long int x){
if(x<0)
return -x;
return x;
}
int main(){
int n;
while((cin>>n)&&n!=0){
for(int i=0;i<300005;i++)
a[i].x=a[i].y=b[i].x=b[i].y=0;
long long int sum=1e17;
int ans=40;
for(int i=0;i<n;i++)
cin>>c[i];
int n1=n/2;
for(int i=0;i<1<<n1;i++){
for(int j=0;j<n1;j++){
if(i>>j&1&&(i!=0||j!=0)){
a[i-1].x+=c[j];
a[i-1].y++;
}
} }
int n2=n-n1;
for(int i=0;i<(1<<n2);i++){
for(int j=0;j<n2;j++){
if(i>>j&1&&(i!=0||j!=0)){
b[i-1].x+=c[j+n1];
b[i-1].y++;
}
} }
for(int i=0;i<(1<<n1)-1;i++){
if(abs1(a[i].x)<sum){
sum=abs1(a[i].x);
ans=a[i].y;
}
else if(abs1(a[i].x)==sum&&a[i].y<ans){
ans=a[i].y;
sum=abs1(a[i].x);
}
}
for(int i=0;i<(1<<n1)-1;i++)
a[i].x=-a[i].x;
for(int i=0;i<(1<<n2)-1;i++){
if(abs1(b[i].x)<sum){
sum=abs1(b[i].x);
ans=b[i].y;
}
else if(abs1(b[i].x)==sum&&b[i].y<ans){
ans=b[i].y;
sum=abs1(b[i].x);
}
} sort(a,a+(1<<n1)-1);
sort(b,b+(1<<n2)-1);
for(int i=0;i<(1<<n1)-1;i++){
int t=lower_bound(b,b+(1<<n2)-1,a[i])-b;
if(t>0){
if(abs1(b[t-1].x-a[i].x)<sum){
sum=abs1(b[t-1].x-a[i].x);
ans=b[t-1].y+a[i].y;
}
else if(abs1(b[t-1].x-a[i].x)==sum&&b[t-1].y+a[i].y<ans){
sum=abs1(b[t-1].x-a[i].x);
ans=b[t-1].y+a[i].y;
}
}
if(t<(1<<n2)-1){
if(abs1(b[t].x-a[i].x)<sum){
sum=abs1(b[t].x-a[i].x);
ans=b[t].y+a[i].y;
}
else if(abs1(b[t].x-a[i].x)==sum&&b[t].y+a[i].y<ans){
sum=abs1(b[t].x-a[i].x);
ans=b[t].y+a[i].y;
}
} }
cout<<sum<<" "<<ans<<endl;
}
}
poj2785 4 Values whose Sum is 0
题目链接: http://poj.org/problem?id=2785
挑战P160
题意:给你各有n个整数的四个数组,问从每个数列中取出一个数使四个数之和为0,问共有多少种取法,一个数列中有多个相同的数字时,将他们当成不同的数字看待,1<=n<=4000;
思路:完全暴力枚举O(n^4)肯定会超时,可以考虑拆成两半后枚举设四个数a+b+c+d=0,先将a+b所有组合存在一个数组中并排序O(n^2),再枚举c+d(O(n^2)),对于每个c+d,在a+b的数列中二分搜索-(c+d),总复杂度O(n^2*log n);
直接贴书上代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int a[4005],b[4005],c[4005],d[4005],cd[16000005];
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cd[i*n+j]=c[i]+d[j];
sort(cd,cd+n*n);
long long ans=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
int CD=-(a[i]+b[j]);
ans+=upper_bound(cd,cd+n*n,CD)-lower_bound(cd,cd+n*n,CD);
}
printf("%lld\n",ans);
}
poj 折半搜索的更多相关文章
- POJ3977:Subset——题解(三分+折半搜索)
http://poj.org/problem?id=3977 题目大意:有一堆数,取出一些数,记他们和的绝对值为w,取的个数为n,求在w最小的情况下,n最小,并输出w,n. ————————————— ...
- 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...
- 2018.11.01 NOIP训练 某种密码(折半搜索)
传送门 直接折半搜索,把所有和装到unorderedmapunordered_mapunorderedmap里面最后统计答案就行了. 然后考试的时候读优并没有处理有负数的情况于是爆零了 代码
- [折半搜索][哈希]POJ1186方程的解数
题目传送门 这道题明显N数据范围非常小,但是M很大,所以用折半搜索实现搜索算法的指数级优化,将复杂度优化到O(M^(N/2)). 将搜出的两半结果用哈希的方式合并(乘法原理). Code: #incl ...
- Codeforces Round #297 (Div. 2)E. Anya and Cubes 折半搜索
Codeforces Round #297 (Div. 2)E. Anya and Cubes Time Limit: 2 Sec Memory Limit: 512 MBSubmit: xxx ...
- 折半搜索【p4799】[CEOI2015 Day2]世界冰球锦标赛
Description 今年的世界冰球锦标赛在捷克举行.Bobek 已经抵达布拉格,他不是任何团队的粉丝,也没有时间观念.他只是单纯的想去看几场比赛.如果他有足够的钱,他会去看所有的比赛.不幸的是,他 ...
- JZYZOJ1530 [haoi2013]开关控制 状压 dfs 折半搜索
http://172.20.6.3/Problem_Show.asp?id=1530 元宵节快要到了,某城市人民公园将举办一次灯展.Dr.Kong准备设计出一个奇妙的展品,他计划将编号为1到N的N(1 ...
- 【BZOJ4800】[CEOI2015 Day2]世界冰球锦标赛 (折半搜索)
[CEOI2015 Day2]世界冰球锦标赛 题目描述 译自 CEOI2015 Day2 T1「Ice Hockey World Championship」 今年的世界冰球锦标赛在捷克举行.\(Bob ...
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
随机推荐
- Structured Streaming编程 Programming Guide
Structured Streaming编程 Programming Guide Overview Quick Example Programming Model Basic Concepts Han ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- CUDA C++编程接口:编译
CUDA C++编程接口:编译 一.概述 CUDA C++为熟悉C++编程语言的用户提供了一个简单的路径,以方便地编写程序以执行该设备. 它由一组最小的扩展到C++语言和运行库. 在编程模型中引入了核 ...
- 蓝牙mesh网络技术的亮点
蓝牙mesh网络技术的亮点 The highlights of Bluetooth mesh networking technology 导言 蓝牙是当今最主要的低功耗无线技术之一,对无线设备用户和开 ...
- CSS基础知识及其基本语法
一.什么是CSS CSS 是层叠样式表( Cascading Style Sheets ) 的简称. 有时我们也会称之为CSS 样式表或级联样式表. CSS 也是一种标记语言 CSS 主要用于设置HT ...
- Java中最大的数据结构:LinkedHashMap了解一下?
前言 Map 家族数量众多,其中 HashMap 和 ConcurrentHashMap 用的最多,而 LinkedHashMap 似乎则是不怎么用的,但是他却有着顺序.两种,一种是添加顺序,一种是访 ...
- 重磅!GitHub官方开源新命令行工具
近日,GitHub 发布命令列工具 (Beta) 测试版,官方表示,GitHub CLI提供了一种更简单.更无缝的方法来使用Github.这个命令行工具叫做GitHub CLI,别名gh. 现在,你就 ...
- 【dp】背包问题
01背包 呐,为什么叫它01背包呢,因为装进去就是1,不装进去就是0.所以针对每个物品就两种状态,装,不装(请允许我用这么老套的开篇,相信听过很多次背包讲解的人,大多都是这个开篇的)所以咯,我这个背包 ...
- cos中的文件结构(DF/EF/MF/FID/AID/SFI..)
转载自:https://blog.csdn.net/Enjoy_endless/article/details/75108349 刚开始接触CPU卡的时候,对于各种文件.应用的定义容易模糊不清,通常不 ...
- 从ReentrantLock看AQS (AbstractQueuedSynchronizer) 运行流程
从ReentrantLock看AQS (AbstractQueuedSynchronizer) 运行流程 概述 本文将以ReentrantLock为例来讲解AbstractQueuedSynchron ...