Keil MDK STM32系列

配置 PWM 输出

  • 选择芯片
  • System Core -> SYS-> Debug: Serial Wire 防止下次无法烧录
  • System Core -> RCC-> High Speed Clock (HSE): Crystal/Ceramic Resonator 启用外接高速晶振
  • Clock Configuration: (配置为最高84MHz)选择外部晶振, 把HSE和PLLCLK连上, 在HCLK上输入84回车, 软件会自动调节各节点倍数
  • Timers -> TIM2
  • Clock Source: Internel Clock, 使用系统的时钟源
    • Channelx: PWM Generation CHx PWM输出
    • Counter Settings PWM频率 = 84MHz / (Perscaler + 1) / (Counter Period + 1)
      • Perscaler: 0
      • Counter Mode: Up
      • Counter Period: 256
      • Internal Clock Division(CKD): No Division
      • auto-reload preload: Enable - 如果启用, 在修改占空比时会等当前周期执行完再变化
    • Trigger Output
      • Master/Slave Mode (MSM bit): Disable
      • Trigger Event Selection: Reset (UG bit from TIMx_EGR)
  • PWM Generation Channel 1
    • Mode: PWM mode1
    • Pulse: 0
    • Output compare perload: Enable
    • Fast Mode: Disable
    • CH Polarity: High
  • PWM Generation Channel 2
    • ...

PWM 配置, 体现在代码上的变化

  1. stm32f4xx_hal_conf.h 去掉了TIM的注释
#define HAL_TIM_MODULE_ENABLED
  1. stm32f4xx_hal_msp.c 增加了初始化方法HAL_TIM_Base_MspInit(), HAL_TIM_MspPostInit(), HAL_TIM_Base_MspDeInit()
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */ /* USER CODE END TIM2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */ /* USER CODE END TIM2_MspInit 1 */
} } void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(htim->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspPostInit 0 */ /* USER CODE END TIM2_MspPostInit 0 */ __HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM2 GPIO Configuration
PA15 ------> TIM2_CH1
PB3 ------> TIM2_CH2
*/
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN TIM2_MspPostInit 1 */ /* USER CODE END TIM2_MspPostInit 1 */
} } /**
* @brief TIM_Base MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */ /* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */ /* USER CODE END TIM2_MspDeInit 1 */
} }
  1. main.c 对TIM2增加初始化方法, TIM的初始化过程与其它外设是不一样的

    这里Prescaler=0, Period=255, 对应84MHz的SYSCLK, 输出的PWM频率为84MHz/256 = 32.8125KHz, 用于输出音频
TIM_HandleTypeDef htim2;

/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0}; htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 255;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2); }

配置定时器

通过TIMx配置

  • 勾选 Internal Clock
  • 配置下方参数
  • Counter Settings
    • Prescaler: 0
    • Counter Mode: Up
    • Counter Period: 1999 这里和Perscaler组合, 实现(0+1)(1999+1)个时钟的周期
    • Internal Clock Division (CKD): No division
    • auto-reload preload: Disable
  • Trigger Output (TRGO) Parameters
    • Master/Slave Mode (MSM bit): Disable
    • Trigger Envent Selection: Reset
  • NVIC Settings
    • TIM3 global interrupt: Enable

对应代码变化

stm32f4xx_hal_conf.h 启用TIM模块

#define HAL_TIM_MODULE_ENABLED

main.c 除了初始化方法, 还需要添加中断处理方法

static void MX_TIM3_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 1999;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
} void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
//...
}

stm32f4xx_hal_msp.c 这里会一起处理其他的TIM实例

void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
// ...
}
else if(htim_base->Instance==TIM3)
{
__HAL_RCC_TIM3_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
} } void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
//...
}
else if(htim_base->Instance==TIM3)
{
__HAL_RCC_TIM3_CLK_DISABLE();
HAL_NVIC_DisableIRQ(TIM3_IRQn);
} }

stm32f4xx_it.h 增加对应的定时中断处理

void TIM3_IRQHandler(void);

stm32f4xx_it.c

/**
* @brief This function handles TIM3 global interrupt.
*/
void TIM3_IRQHandler(void)
{
HAL_TIM_IRQHandler(&htim3);
}

Keil MDK STM32系列(七) STM32F4基于HAL的PWM和定时器的更多相关文章

  1. Keil MDK STM32系列(八) STM32F4基于HAL的PWM和定时器输出音频

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  2. Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  3. Keil MDK STM32系列(九) 基于HAL和FatFs的FAT格式SD卡TF卡读写

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  4. Keil MDK STM32系列(四) 基于抽象外设库HAL的STM32F401开发

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  5. Keil MDK STM32系列(六) 基于抽象外设库HAL的ADC模数转换

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  6. Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401开发

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  7. Keil MDK STM32系列(三) 基于标准外设库SPL的STM32F407开发

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  8. Keil MDK STM32系列(五) 使用STM32CubeMX创建项目基础结构

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  9. SQL Server 2008空间数据应用系列七:基于Bing Maps(Silverlight) 的空间数据展现

    原文:SQL Server 2008空间数据应用系列七:基于Bing Maps(Silverlight) 的空间数据展现 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft ...

随机推荐

  1. 图数据库HugeGraph:HugeGraph-Hubble基于Web的可视化图管理初体验

    原创/朱季谦 一.HugeGraph-Hubble简介 关于HugeGraph,官方资料是这样介绍的,它是一款易用.高效.通用的开源图数据库系统(Graph Database), 实现了 Apache ...

  2. 前端er必须掌握的数据可视化技术

    又是一月结束,打工人准时准点的汇报工作如期和大家见面啦.提到汇报,必不可少的一部分就是数据的汇总.分析. 作为一名合格的社会人,我们每天都在工作.生活.学习中和数字打交道.小到量化的工作内容,大到具体 ...

  3. 以太网/ IPV4/IPV6包头,TCP包头格式回顾

    问题:以太网数据包,承载的数据内容大小46~1500字节,是如何来的? 以太网数据包结构  以太网协议规定最小链路层数据包(帧)为64字节,其中以太网首部+尾部共计18字节(源/目的MAC12字节:上 ...

  4. 在程序出现问题,当找不到错误时,第一时间用try ,catch包括起来

    在程序出现问题,当找不到错误时,第一时间用try ,catch包括起来,把错误找到.

  5. 在mysql5.8中用json_extract函数解析json

    背景:某个字段的数据中是JSON,需要提取其中的卡号部分,如: {"objType":"WARE","orderId":6771254073 ...

  6. centos使用shell脚本定时备份docker中的mysql数据库

    shell脚本 #!/bin/bash #容器ID container_id="6b1faea2b4d7" #登录用户名 mysql_user="root" # ...

  7. C/C++ byte 转 int 有符号数,转成Int 无符号数

    p.p1 { margin: 0; font: 12px "Helvetica Neue"; color: rgba(69, 69, 69, 1); min-height: 14p ...

  8. C/C++ 结构体字节对齐

    在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题.从理论上讲,对于任何 变量的访问都可以从任何地址开始访问,但是事实上不是如此 ...

  9. 【LeetCode】242. Valid Anagram 解题报告(Java & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 字典统计词频 排序 日期 [LeetCode] 题目地址:ht ...

  10. 【LeetCode】443. String Compression 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 使用额外空间 不使用额外空间 日期 题目地址:htt ...