1. 范数的含义和定义

范数是具有“长度”概念的函数。在线性代数、泛函分析及相关领域,是一个函数,它为向量空间内的所有向量赋予非零的正的长度或大小。另一方面,半范数可以为非零的向量赋予零长度。

例如,在二维欧式几何空间\(R^2\)中(简单理解就是二维坐标系)就有欧式范数。在这个向量空间的元素(比如向量\((3,7)\))常常在笛卡尔坐标系统中被画成一个从原点出发的箭头,而这个向量的欧式范数就是箭头的长度。

拥有(定义)范数的向量空间就是赋范向量空间,拥有(定义)办法书的向量空间就是赋半范向量空间

更加规范的定义:

假设V是域F上的向量空间;V的半范数是一个函数:\(p:V\rightarrow R;x\rightarrow p(x)\),满足:

  • \(p(v)\ge 0\)(具有半正定性)
  • \(p(av)=|a|p(v)\)(具有绝对一次齐次性)
  • \(p(u+v)\le p(u)+p(v)\)(满足三角不等式,或者称次可加性)

范数是一个半范数加上额外的性质:

  • \(p(v)=0\),当且仅当\(v\)是零向量(正定性)

若拓扑向量空降的拓扑可以被范数导出,这个拓扑向量空间被称为赋范向量空间。

2.例子

  • 所有的范数都是半范数
  • 平凡半范数,即\(p(x)=0,\forall x \in V\)
  • 绝对值是实数集上的一个范数
  • 对向量空间上的线性型\(f\)可以定义一个半范数:\(x\rightarrow |f(x)|\)

绝对值范数

绝对值范数为:

\[||x||=\sum^n_i|x_i|
\]

是在由实数或虚数构成的一维向量空间中的范数

绝对值范数是曼哈顿范数的特殊形式

\(L_p\)范数

\(L_p\)范数是向量空间中的一组范数。\(L_p\)范数与幂平均有一定的联系,定义如下:

\[L_p(\vec{x})=||\vec{x}||_p=(\sum^b_{i=1}|x_i|^p)^{\frac{1}{p}}\ \ ,\ \vec{x}=\{x_1,x_2,x_3,...,x_n\},p\ge 1
\]

图中的q应为p。这是p取不同值是,在\(R^2\)空间上的\(L_p\)范数等高线的其中一条。该图展示了各\(L_p\)范数的形状。

  • \(p=0 : ||\vec{x}||_0=x_i不等于0的个数\)。注意,这里的\(L_0\)范数并非通常意义上的范数(不满足三角不等式或次可加性)

  • \(p=1 : ||\vec{x}||_1=\sum^{n}_{i=1}|x_i|\),即\(L_1\)范数是向量各分量绝对值之和,又称曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量之间的差异,汝绝对误差和(Sum of Absolute Difference)

    由于L1范数的天然性质,对L1优化的解是一个稀疏解(查不到准确的定义,不过大概意思就是说这个解向量中很多项都是零),L1范数也就被称作稀疏规则算子

  • \(p=2 : ||\vec{x}||_2=\sqrt{\sum^n_{i=1}|x_i|^2}\),此为欧氏距离

  • \(p=+\infty : ||\vec{x}||_{\infty}=\lim\limits_{p\rightarrow\infty}(\displaystyle\sum_{i=1}^{n}|x_i|^p)^{\frac{1}{p}}=\underset{i}{max}\ |x_i|\)[1],通常表示元素的最大值,即无穷范数或最大范数

欧几里得范数

在n维欧几里得空间\(R^n\)上,向量\(x=(x_1,x_2,x_3,...,x_n)^T\)的最符合直觉的长度由以下公式给出:

\[||x||_2=\sqrt{x_1^2+...+x_n^2}
\]

根据勾股定理,它给出了从原点到点x之间的(通常意义下)的距离。欧几里得范数是\(R^n\)上最常用的范数,但正如下面所举出的,\(R^n\)上也可以定义其它的范数。然而,以下定义的范数都定义了同一个拓扑结构,因此它们在某种意义上都是等价的。

在一个n维复数空间\(C^n\)中,最常见的范数是:

\[||z||=\sqrt{|z_1|^2+...+|z_n|^2}=\sqrt{z_1\overline{z}_1+...+z_n\overline{z}_n}
\]

以上两者又可以以向量与自身的内积的平凡根表示:

\[||x||=\sqrt{x^*x}
\]

其中x是一个列向量\(([x_1,x_2,...,x_n]^T)\),而\(x^*\)表示其共轭转置

以上公式适用于任何内积空间,包括欧式空间和复空间。在欧几里得空间里,内积等价于电机,因此公式可以写为:

\[||x||=\sqrt{x·x}
\]

特别的,\(R^{n+1}\)中所有的欧几里得范数为同一个给定正实数的向量的集合是一个n维球面。

矩阵范数

矩阵可以看做向量空间上的一次向量的线性变换,矩阵范数就是用来衡量变化幅度大小的

诱导范数

由向量范数的\(L_p\)范数诱导而来:

列和范数
\[||A||_1=\underset{j}{max}\sum^m_{i=1}|a_{ij}|
\]

即所有矩阵的列向量绝对值之和的最大值

谱范数
\[||A_2||_2=\sqrt{\lambda_1},\lambda_1为A^TA的最大特征值
\]

即\(A^TA\)矩阵的最大特征值的开平方

行和范数
\[\infty -范数:||A||_{\infty}=\underset{i}{max}\sum^m_{j=1}||a_{ij}||
\]

即所有矩阵行向量绝对值之和的最大值

非诱导范数

Frobenius范数
\[F-范数:||A||_F=\sum^m_{i=1}(\sum^n_{j=1}|a_{ij}|^2)^{\frac{1}{2}}
\]

即矩阵元素绝对值的平方和再开平方

核范数
\[||A||_*=\sum^n_{i=1}\lambda_i,\lambda_i为矩阵A的奇异值
\]

指矩阵奇异值的和

参考:

  1. 范数-维基百科
  2. Lp范数-维基百科
  3. 【数学知识】||x||(范数 norm)

一些更深入的相关知识:

  1. L1正则化引起稀疏解的多种解释
  2. L1正则化的稀疏性解释
  3. 为什么L1稀疏,L2平滑?

  1. 看一个例子\(\underset{x_i}{min}\ \underset{y_i}{max}\ |\varepsilon_i|,\varepsilon_i=x_i-y_i\).这个例子里面 |εi|是考察对象,而 xi 和 yi 是两个变量。xi 可以取很多值, yi也可以取很多值。两个下标的意思是:遍历所有的xi和yi取值。先看里面那一层,即 max|εi|.它的意思是,xi取一个固定的值(比如x1),yi遍历所有取值,使得|εi|最大值,这样就找到了(x1, ym1, |εi|1) 这样一个样本。然后,改变xi的值(比如x2),再遍历yi取值,又可以找到|εi|最大值,即 (x2, ym2, |εi|2)的情况。……以此类推,可以理解 min{ },就是在 xi 取所有情况时,从找到的 |εi|1, |εi|2 .... 中找最小值。

范数||x||(norm)笔记的更多相关文章

  1. 范数(norm)

    [范数定义] 非负实值函数(非线性) 1)非负性: || a || >= 0 2)齐次性: || ka || = |k| ||a|| 3)三角不等式: || a + b || <= || ...

  2. 范数(norm) 几种范数的简单介绍

    原文地址:https://blog.csdn.net/a493823882/article/details/80569888 我们知道距离的定义是一个宽泛的概念,只要满足非负.自反.三角不等式就可以称 ...

  3. 学习笔记DL005:线性相关、生成子空间,范数,特殊类型矩阵、向量

    线性相关.生成子空间. 逆矩阵A⁽-1⁾存在,Ax=b 每个向量b恰好存在一个解.方程组,向量b某些值,可能不存在解,或者存在无限多个解.x.y是方程组的解,z=αx+(1-α),α取任意实数. A列 ...

  4. 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记

    Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...

  5. CMU Convex Optimization(凸优化)笔记1--凸集和凸函数

    CMU凸优化笔记--凸集和凸函数 结束了一段时间的学习任务,于是打算做个总结.主要内容都是基于CMU的Ryan Tibshirani开设的Convex Optimization课程做的笔记.这里只摘了 ...

  6. norm函数

    如果A为向量 norm(A,p) 返回向量A的p范数. norm(A) 返回向量A的2范数,即等价于norm(A,2).

  7. Matlab求范数

    对 p = 2,这称为弗罗贝尼乌斯范数(Frobenius norm)或希尔伯特-施密特范数( Hilbert–Schmidt norm),不过后面这个术语通常只用于希尔伯特空间.这个范数可用不同的方 ...

  8. matlab norm 范式

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 p  返回值  1  返回A中最大一列和,即max(sum(abs(A)))  2 返回A的 ...

  9. 范数 L1 L2

    在线性代数,函数分析等数学分支中,范数(Norm)是一个函数,是赋予某个向量空间(或矩阵)中的每个向量以长度或大小的函数.对于零向量,令其长度为零.直观的说,向量或矩阵的范数越大,则我们可以说这个向量 ...

  10. 论文笔记:目标追踪-CVPR2014-Adaptive Color Attributes for Real-time Visual Tracking

    基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人 ...

随机推荐

  1. 《python深度学习》(高清、源码).PDF,免费无需任何解压密码

    链接:https://pan.baidu.com/s/1zx20XEpPBJeBG2e1IGMc6g 提取码:wub3

  2. 《selenium2 python自动化测试》(高清).PDF,免费无需任何解压密码

    链接:https://pan.baidu.com/s/1eAI0mXvJeblBn2Tn9WClEA 提取码:7m5u

  3. java POJO中 Integer 和 int 的不同,用int还是用Integer

    https://www.jianshu.com/p/ff535284916f [int和Integer的区别] int是java提供的8种原始类型之一,java为每个原始类型提供了封装类,Intege ...

  4. git -remote: Support for password authentication was removed on August 13, 2021

    克隆代码时,报错: Support for password authentication was removed on August 13, 2021. Please use a personal ...

  5. nuxt写路由接口

    //在server/interface/city.js import Router from 'koa-router'; const router = new Router({ prefix:'/ci ...

  6. VC 2010 Express 学生版(中文版)

    Microsoft Visual C++ 2010 Express 学生版 下载传送门(提取码:r7sm) 如何安装 拿到压缩文件后,解压到桌面(别怕,安装完后这个文件夹是可以删除的). 在 &quo ...

  7. Java 中如何实现线程间通信

    世界以痛吻我,要我报之以歌 -- 泰戈尔<飞鸟集> 虽然通常每个子线程只需要完成自己的任务,但是有时我们希望多个线程一起工作来完成一个任务,这就涉及到线程间通信. 关于线程间通信本文涉及到 ...

  8. Flowable实战(七)用户和组

      在流程中,最重要的参与者是用户.流程定义了任务何时需要用户参与,什么用户可以参与.   组可以理解为我们常说的角色.   Flowable中内置了一套简单的对用户和组的支持,身份管理(IDM ID ...

  9. HttpRunner3的变量是如何传递的

    HttpRunner3的变量可以在测试类的用例配置中通过variables添加,也可以在测试步骤中使用extract().with_jmespath()提取出来放到变量x,再用$x传递给下一个接口使用 ...

  10. 1011day-人口普查系统

    1.Browse.jsp <%@ page language="java" contentType="text/html; charset=UTF-8" ...