1. 果蝇优化算法背景

在夏天,果蝇是一种随处可见的昆虫。果蝇在嗅觉和视觉特别突出。腐烂的食物发出一种刺鼻的味道,温度越高这种气味的扩散速度较快,果蝇对这种味道非常敏感。腐烂的味道和食物的位置有关。一般而言,食物越近,味道越浓;反之,味道越淡。而果蝇一般都是从味道淡的地方,飞往味道浓的地方,即食物所在的方向。当它们在食物附近的时候,可以利用视觉寻找食物。基于果蝇寻找食物的行为,2011年Wen-Tsao Pan提出了果蝇优化算法(Fruit Fly Optimization)。

2. 果蝇优化算法的数学模型

2.1 果蝇优化算法的数学模型假设

果蝇搜索食物分为两个阶段:

(1) 嗅觉阶段

      这一阶段,果蝇利用嗅觉感知空气所含的味道,判断出食物的味道,并根据食物的味道浓度接近食物,这属于全局勘探过程。

(2) 视觉阶段

      在果蝇到达食物位置附近时,果蝇开始利用视觉准确找到食物的位置,这个过程属于局部开发过程。

2.2 果蝇优化算法

a. 多维果蝇优化算法

\[y = x_1^2+x_2^2+x_3^3+x_4^2+x_5^2
\]

首先,初始化5群果蝇群体,分派给这5个变量,每个群体中有10只果蝇,随机初始化果蝇的群体位置区间为\([-100,100]\),果蝇搜寻食物的随机飞行方向与距离区间为\([-1,1]\).

2.3 Matlab代码

% -------------------------------------------------------------------------
% 名 称: 果蝇优化算法
% 作 者: 潘文超
% 代 码: 编码雪人
% 时 间: 2021-06-05
% 备 注: 首先, 每个变量视为一个种群, 种群规模自己设定.
% ------------------------------------------------------------------------- %% 清空运行环境
clc
clear %% 定义目标函数
fobj = @ Sphere; %% 参数定义
Max_iter = 1000; % 最大迭代次数
sizePop = 10; % 种群规模
dim = 5; % 维数
ub = 100; % 变量的上界
lb = -100; % 变量的下界
costScore = zeros(Max_iter, 1); %% 初始化种群
X = zeros(sizePop, dim);
Y = zeros(sizePop, dim);
dist = zeros(sizePop, dim);
S = zeros(sizePop, dim);
Fitness = zeros(sizePop, 1);
for p=1:sizePop
% 初始化每个果蝇群体中个体的位置
X(p, :) = lb + (ub - lb).*rand(1, dim);
Y(p, :) = lb + (ub - lb).*rand(1, dim); % 计算每个果蝇群体中个体的距离
dist(p, :) = sqrt(X(p, :).^2 + Y(p, :).^2); % 果蝇个体中的味道浓度
S(p, :) = 1./dist(p, :); % 计算适应度值
Fitness(p, :) = fobj(S(p, :));
end %% 找出果蝇群体中的味道浓度最高的果蝇
[bestSmell,loc] = min(Fitness);
new_X = X(loc, :); % The X axis of min fitness
new_Y = Y(loc, :); % The Y axis of min fitness
bestScore = bestSmell;
bestSlove = S(loc, :); %% 主函数
for it=1:Max_iter
for p=1:sizePop
% 嗅觉搜索
X(p, :) = new_X + 2.*rand(1, dim) -1;
Y(p, :) = new_Y + 2.*rand(1, dim) -1; dist(p, :) = sqrt(X(p, :).^2 + Y(p, :).^2);
S(p, :) = 1./dist(p, :);
Fitness(p, :) = fobj(S(p, :));
end [bestSmell, loc] = min(Fitness); % 视觉搜索
if bestSmell < bestScore
new_X = X(loc, :);
new_Y = Y(loc, :);
bestScore = bestSmell;
end costScore(it) = bestScore;
% 输出
disp(['----------', num2str(it), '------------']);
disp(bestSmell);
end %% 可视化
figure
axis tight
semilogy(costScore, 'r-')

目标函数

function y = Sphere(x)
y = sum(x.^2);
end

代码如有疑问,请留言指正。

果蝇优化算法_Fruit Fly Optimization的更多相关文章

  1. 果蝇优化算法(FOA)

    果蝇优化算法(FOA) 果蝇优化算法(Fruit Fly Optimization Algorithm, FOA)是基于果蝇觅食行为的仿生学原理而提出的一种新兴群体智能优化算法. 果蝇优化算法(FOA ...

  2. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

  3. 数值计算:粒子群优化算法(PSO)

    PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...

  4. paper 8:支持向量机系列五:Numerical Optimization —— 简要介绍求解求解 SVM 的数值优化算法。

    作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法.确确实实只是简单介绍一 ...

  5. SMO优化算法(Sequential minimal optimization)

    原文:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html SMO算法由Microsoft Research的John C. ...

  6. Sequential Minimal Optimization(SMO,序列最小优化算法)初探

    什么是SVM SVM是Support Vector Machine(支持向量机)的英文缩写,是上世纪九十年代兴起的一种机器学习算法,在目前神经网络大行其道的情况下依然保持着生命力.有人说现在是神经网络 ...

  7. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  8. [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...

  9. [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...

随机推荐

  1. [cf1444D]Rectangular Polyline

    由于两种线段要交替出现,有解的必要条件即为$h=v$(以下均记为$n$) 进一步的,再假设两种线段依次对应于向量$(a_{i},0)$和$(0,b_{i})$,根据题意要求向量长度为给定值且和为0,那 ...

  2. jmeter链接数据库,信息全部填写正确,运行之后没有结果

    之前遇到一个很苦恼的问题,jmeter链接数据库,数据库填写的资料全部都没有问题,在其他电脑jmeter上都可以正常链接,但是在我的电脑上运行却总是不出结果, 用mysql链接数据库也一切正常,一直找 ...

  3. 『学了就忘』Linux权限管理 — 54、sudo授权

    目录 1.什么是sudo授权 2. sudo授权说明 3.sudo命令的使用 示例1 示例2 示例3 1.什么是sudo授权 在Linux系统中,/sbin/和/usr/sbin/两个目录中的命令只有 ...

  4. 洛谷 P3644 [APIO2015]八邻旁之桥(对顶堆维护中位数)

    题面传送门 题意: 一条河将大地分为 \(A,B\) 两个部分.两部分均可视为一根数轴. 有 \(n\) 名工人,第 \(i\) 名的家在 \(x_i\) 区域的 \(a_i\) 位置,公司在 \(y ...

  5. 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)

    题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...

  6. Google服务器架构图解简析

    无疑是互联网时代最闪亮的明星.截止到今天为止,Google美国主站在Alexa排名已经连续3年第一,Alexa Top100中,各国的Google分站竟然霸占了超过20多个名额,不得不令人感叹Goog ...

  7. 我的分布式微服务框架:YC-Framework

    YC-Framework官方文档:http://framework.youcongtech.com/ YC-Framework源代码:https://github.com/developers-you ...

  8. 年底巩固下 CS 知识「GitHub 热点速览 v.21.49」

    作者:HelloGitHub-小鱼干 期末到了!是时候来一波 CS 复习资料了,从本科基础知识开始到实用编程技术.本周 GitHub 热点趋势榜给你提供了最全的复习资料:清华的 CS 四年学习资料.W ...

  9. 日常Java 2021/9/26 (二柱升级版)

    package m; import java.util.Scanner;import java.util.Random; public class di_er { static int number= ...

  10. 超好玩:使用 Erda 构建部署应用是什么体验?

    作者|郑成 来源|尔达 Erda 公众号 导读:最近在 Erda 上体验了一下构建并部署一个应用,深感其 DevOps 平台的强大与敏捷,不过为了大家能够快速上手,我尽量简化应用程序,用一个简单的返回 ...