【LeetCode】638. Shopping Offers 解题报告(Python & C++)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/shopping-offers/description/
题目描述
In LeetCode Store, there are some kinds of items to sell. Each item has a price.
However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price.
You are given the each item’s price, a set of special offers, and the number we need to buy for each item. The job is to output the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers.
Each special offer is represented in the form of an array, the last number represents the price you need to pay for this special offer, other numbers represents how many specific items you could get if you buy this offer.
You could use any of special offers as many times as you want.
Example 1:
Input: [2,5], [[3,0,5],[1,2,10]], [3,2]
Output: 14
Explanation:
There are two kinds of items, A and B. Their prices are $2 and $5 respectively.
In special offer 1, you can pay $5 for 3A and 0B
In special offer 2, you can pay $10 for 1A and 2B.
You need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A.
Example 2:
Input: [2,3,4], [[1,1,0,4],[2,2,1,9]], [1,2,1]
Output: 11
Explanation:
The price of A is $2, and $3 for B, $4 for C.
You may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C.
You need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C.
You cannot add more items, though only $9 for 2A ,2B and 1C.
Note:
- There are at most 6 kinds of items, 100 special offers.
- For each item, you need to buy at most 6 of them.
- You are not allowed to buy more items than you want, even if that would lower the overall price.
题目大意
可以直接按照原价price购买商品,也可以用一些套餐。套餐的价格用special给出,用户的需求用needs给出。求问怎么组合才能最便宜。
解题方法
DFS
明显是DP的题目,但DFS没超时的话可以使用DFS解。
我们定义DFS返回的是对于当前的needs需要付出的最小价格。
因为这个题允许多次使用同一个套餐,所以这次dfs不需要像permutation一样记录位置,只需要保留我们如果直接购买或者套餐之后,剩余的商品数目即可。
dfs的做法是这样:求出直接购买这些商品的价格,然后遍历所有的套餐,看能不能使用这个套餐(判断的方式是使用套餐之后仍然还有剩余物品),保存所有情况下的最小值返回即可。
这种做法在remains全部是0的情况下,也会做一次遍历。但是注意不能改成min(remains) > 0的情况下才去继续遍历,因为有一个needs已经为0了的情况下,我们还要确保其他的needs都是0才可以。
我在写下面这个代码的时候,犯了一个大错:计算local_min的时候写成了local_min = min(local_min, spec[-1]) + self.dfs(price, special, remains),这个错误不可饶恕啊!!
代码如下:
class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
return self.dfs(price, special, needs)
def dfs(self, price, special, needs):
local_min = self.directPurchase(price, needs)
for spec in special:
remains = [needs[j] - spec[j] for j in range(len(needs))]
if min(remains) >= 0:
local_min = min(local_min, spec[-1] + self.dfs(price, special, remains))
return local_min
def directPurchase(self, price, needs):
total = 0
for i, need in enumerate(needs):
total += price[i] * need
return total
使用记忆化搜索可以加速计算,代码如下:
class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
return self.dfs(price, special, needs, {})
def dfs(self, price, special, needs, d):
val = sum(price[i] * needs[i] for i in range(len(needs)))
for spec in special:
remains = [needs[j] - spec[j] for j in range(len(needs))]
if min(remains) >= 0:
val = min(val, d.get(tuple(needs), spec[-1] + self.dfs(price, special, remains, d)))
d[tuple(needs)] = val
return val
其实不用定义一个新的函数dfs(),因为我们可以看出dfs的参数和原函数一样的,所以直接用原函数进行递归更方便。
class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
N = len(needs)
res = sum(p * n for p, n in zip(price, needs))
for sp in special:
if all(sp[i] <= needs[i] for i in range(N)):
remain = [needs[i] - sp[i] for i in range(N)]
if min(remain) >= 0:
res = min(res, sp[-1] + self.shoppingOffers(price, special, remain))
return res
回溯法
使用回溯法也能解决这个问题,使用了一个套餐之后,再进行回溯,看求得的结果是不是能更便宜。定义的helper函数就是用来计算在还有剩余needs的情况下的最小值。
class Solution {
public:
int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) {
return helper(price, special, needs, 0);
}
int helper(vector<int>& price, vector<vector<int>>& special, vector<int>& needs, int start) {
const int N = price.size();
int ans = 0;
for (int i = 0; i < N; i++) {
ans += price[i] * needs[i];
}
for (int i = start; i < special.size(); i++) {
auto offer = special[i];
int total = offer.back();
for (int j = 0; j < N; j ++) {
needs[j] -= offer[j];
}
if (*min_element(needs.begin(), needs.end()) >= 0) {
total += helper(price, special, needs, i);
ans = min(total, ans);
}
for (int j = 0; j < N; j++) {
needs[j] += offer[j];
}
}
return ans;
}
};
参考资料:
https://leetcode.com/problems/shopping-offers/discuss/105212/Very-Easy-to-understand-JAVA-Solution-beats-95-with-explanation
https://leetcode.com/problems/shopping-offers/discuss/105204/Python-dfs-with-memorization.
日期
2018 年 9 月 7 日 —— 中午不睡,下午崩溃
2019 年 3 月 23 日 —— 今天也是元气满满的一天!
【LeetCode】638. Shopping Offers 解题报告(Python & C++)的更多相关文章
- LeetCode 638 Shopping Offers
题目链接: LeetCode 638 Shopping Offers 题解 dynamic programing 需要用到进制转换来表示状态,或者可以直接用一个vector来保存状态. 代码 1.未优 ...
- 【LeetCode】120. Triangle 解题报告(Python)
[LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...
- Week 9 - 638.Shopping Offers - Medium
638.Shopping Offers - Medium In LeetCode Store, there are some kinds of items to sell. Each item has ...
- LeetCode 1 Two Sum 解题报告
LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...
- 【LeetCode】Permutations II 解题报告
[题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...
- 【LeetCode】Island Perimeter 解题报告
[LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...
- 【LeetCode】01 Matrix 解题报告
[LeetCode]01 Matrix 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/01-matrix/#/descripti ...
- 【LeetCode】Largest Number 解题报告
[LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...
- 【LeetCode】Gas Station 解题报告
[LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...
随机推荐
- 多线程高级篇1 — JUC — 只弄到处理高并发集合问题
1.线程池 1.1).什么是线程池? 池( pool ),就是一个容器,所以线程池就是把多个线程对象放到一个容器中 1.2).如何创建线程池? 先来了解几个常识 Executor -- 这是一个接口( ...
- 学习java 7.23
学习内容: 前面讲解了如果构建GUI界面,其实就是把一些GUI的组件,按照一定的布局放入到容器中展示就可以了.在实际开发中,除了主界面,还有一类比较重要的内容就是菜单相关组件,可以通过菜单相关组件很方 ...
- Celery进阶
Celery进阶 在你的应用中使用Celery 我们的项目 proj/__init__.py /celery.py /tasks.py 1 # celery.py 2 from celery ...
- json模块中函数的用法
json模块中主要使用四个函数:json.load(),json.dump(),json.loads(),json.dumps() json.loads()是将一个json编码的字符串转换成pytho ...
- 爬虫系列:使用 MySQL 存储数据
上一篇文章我们讲解了爬虫如何存储 CSV 文件,这篇文章,我们讲解如何将采集到的数据保存到 MySQL 数据库中. MySQL 是目前最受欢迎的开源关系型数据库管理系统.一个开源项目具有如此之竞争力实 ...
- collection映射
讲了manyToOne和oneToMany,下面来看看get方法.在之前已经说过,如果是映射单对象,直接使用association来映射.而如果关系 是一个集合,则需要使用collection来描述. ...
- 事务(@Transactional注解)的用法和实例
参数 @Transactional可以配制那些参数及以其所代表的意义: 参数 意义 isolation 事务隔离级别 propagation 事务传播机制 readOnly 事务读写性 noRollb ...
- mysql key与index的区别
key包含了index, 而index没有key的功能. 1.key 是数据库的物理结构,它包含两层意义,一是约束(偏重于约束和规范数据库的结构完整性),二是索引(辅助查询用的).包括primary ...
- Java 设计模式--策略模式,枚举+工厂方法实现
如果项目中的一个页面跳转功能存在10个以上的if else判断,想要做一下整改 一.什么是策略模式 策略模式是对算法的包装,是把使用算法的责任和算法本身分割开来,委派给不同的对象管理,最终可以实现解决 ...
- layui-入门
1.下载layui 2.导入layui <title>开始使用layui</title> <!-- 导入js样式 --> <link rel="st ...