Codeforces 1009E Intercity Travelling | 概率与期望
题目大意:
一个人要从$A$地前往$B$地,两地相距$N$千米,$A$地在第$0$千米处,$B$地在第$N$千米处。
从$A$地开始,每隔$1$千米都有$\dfrac{1}{2}$的概率拥有一个休息点, 如果这个地方有休息点的话,这个人就可以在此地休息,起点处(即第$0$千米处)一定是一个休息点。
如果这个人在最近一次休息后行驶了$i$千米,那么他将有$\sum_{j=1}^ia_i$疲劳值。
给出$N$与$a_i(i$为整数且$i\in[1,N])$,求这个人到达$B$地后拥有的疲劳值的期望,将其与$2^{N-1}$的积模$998244353$后输出。
题解:
设$S_i$为从第$i-1$千米处到达第$i$千米处所产生的疲劳值的期望。
考虑计算每个$S_i$,最后的答案即为$2^{n-1}\cdot\sum_{i=1}^NS_i\bmod998244353$。
很明显的一点是,与$S_i$有关的即为到达第$i$千米处前最后一次休息的地方是哪里。
对此,就会用$i-1$种可能的情况,
分别是最后一次休息的地方在第$0$千米处,在第$1$千米处,在第$2$千米处……在第$i-1$千米处;
这些情况的概率分别是$\dfrac{1}{2^{i-1}}$,$\dfrac{1}{2^{i-1}}$,$\dfrac{1}{2^{i-2}}$$\cdots$$\dfrac{1}{2^1}$;
在这些情况中,从第$i-1$千米处到达第$i$千米处所产生的疲劳值分别是$a_i$,$a_{i-1}$,$a_{i-2}$$\cdots$$a_1$。
注意:最后一次休息的地方在第$0$千米处的概率是$\dfrac{1}{2^{i-1}}$而不是$\dfrac{1}{2^i}$是因为第$0$千米处一定是一个休息点。
于是就有$S_i=\dfrac{a_i}{2^{i-1}}+\dfrac{a_{i-1}}{2^{i-1}}+\dfrac{a_{i-2}}{2^{i-2}}+\cdots+\dfrac{a_1}{2^1}$。
那么对于$S_{i+1}$,就有$S_{i+1}=S_i-\dfrac{a_i}{2^i}+\dfrac{a_{i+1}}{2^i}$。
然后,就可以在$O(n)$的时间内递推求出所有的$S_i$了。
初始条件?显然有$S_1=a_1$。
计算的时候不要忘记与$2^{N-1}$相乘以及取模。
代码:
#include<iostream>
#include<cstdio>
using namespace std;
const long long mod=998244353;
long long a[1000005],f[1000005],mi[1000005];
int main()
{
int n=0;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
mi[0]=1;
for(int i=1;i<=n-1;i++) mi[i]=mi[i-1]*2%mod;//预处理出2的i次方
f[1]=mi[n-1-0]*a[1]%mod;//初始条件
long long ans=0;
for(int i=1;i<=n-1;i++)
{
ans=(ans+f[i])%mod;//累加答案
f[i+1]=((f[i]-mi[n-1-i]*a[i]%mod+mod)%mod+mi[n-1-i]*a[i+1]%mod)%mod;//递推
}
ans=(ans+f[n])%mod;//不要忘记加上最后这一项
printf("%I64d",ans);
return 0;
}
参考资料:
PikMike's blog —— Разбор Educational Codeforces Round 47
Codeforces 1009E Intercity Travelling | 概率与期望的更多相关文章
- 1009E Intercity Travelling 【数学期望】
题目:戳这里 题意:从0走到n,难度分别为a1~an,可以在任何地方休息,每次休息难度将重置为a1开始.求总难度的数学期望. 解题思路: 跟这题很像,利用期望的可加性,我们分析每个位置的状态,不管怎么 ...
- CodeForces - 1009E Intercity Travelling
题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...
- Codeforces D. Intercity Travelling(区间组合)
题目描述: D. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes in ...
- CodeForces - 28C Bath Queue 概率与期望
我概率期望真是垃圾--,这题搞了两个钟头-- 题意 有\(n\)个人,\(m\)个浴室,每个浴室里有\(a_i\)个浴缸.每个人会等概率随机选择一个浴室,然后每个浴室中尽量平分到每个浴缸.问期望最长排 ...
- Codeforces 1009 E. Intercity Travelling(计数)
1009 E. Intercity Travelling 题意:一段路n个点,走i千米有对应的a[i]疲劳值.但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加.休息 ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- 【算法学习笔记】概率与期望DP
本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...
- 【BZOJ-3450】Tyvj1952Easy 概率与期望DP
3450: Tyvj1952 Easy Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 468 Solved: 353[Submit][Status] ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
随机推荐
- 了解PHP-FPM
在服务器上,当我们查看php进程时,全都是php-fpm进程,大家都知道这个就是php的运行环境,那么,它到底是个什么东西呢? PHP-FPM简介 PHP-FPM,就是PHP的FastCGI管理器,用 ...
- VS 2019下载、安装与注册包含MF、界面美化和安装Visual Assist
下载: 1.在搜索框中输入"微软" 2. 3. 安装: 1.双击运行-继续-等待安装完成 2. 3.安装完后,重启电脑,并创建快捷方式. 注册: 1.打开软件 2. 3. 4.网上 ...
- Java基础系列(21)- dowhile循环
do-while循环 对于while语句而言,如果不满足条件,则不能进入循环.但有时候我们需要即使不满足条件,也至少执行一次 do-while循环和while循环相似,不同的是,do-while循环至 ...
- no rxtxSerial in java.library.path
java开发过程中,遇到no rxtxSerial in java.library.path问题,是由于缺少一个dll文件导致. 在jre/bin下添加rxtxSerial.dll 文件 win10环 ...
- pkusc2021游记
@ 目录 前言 Day 0 Day 1 Day 2 Day 3 前言 到时候APIO的大概也会写在这篇里吧. Day 0 车,公交,飞机,公交,车 坐了半天的交通终于到了,整个人都坐的晕乎乎的,然后看 ...
- Python : TypeError: 'int' object is not iterable
用循环依次对list中的每个名字打印出 Hello, xxx! -------------------------------------------------------- L = ['Bart' ...
- 支持remote write和exemplar的prometheus服务
最近项目组在做Prometheus指标采集和告警,其中用到了Prometheus的exemplar特性,由于该特性比较新,当前支持该特性的存储有比较少.因此需要自行实现exemplar功能. 我在gi ...
- yolov5实战之二维码检测
目录 1.前沿 2.二维码数据 3.训练配置 3.1数据集设置 3.2训练参数的配置 3.3网络结构设置 3.4训练 3.5结果示例 附录:数据集下载 1.前沿 之前总结过yolov5来做皮卡丘的检测 ...
- 聊聊我对 GraphQL 的一些认知
每隔一段时间就能看到一篇 GraphQL 的文章,但是打开文章一看,基本上就是简单的介绍下 GraphQL 的特性.很多文章其实就是 github 上找个 GraphQL 的项目,然后按照对应的 de ...
- The Data Way Vol.4|开源是创造软件诸多方法中最好的一种形式
关于「The Data Way」 「The Data Way」是由 SphereEx 公司出品的一档播客节目.这里有开源.数据.技术的故事,同时我们关注开发者的工作日常,也讨论开发者的生活日常:我们聚 ...