鸿蒙轻内核源码分析:文件系统FatFS
摘要:本文为大家介绍FatFS文件系统结构体的结构体和全局变量,并分析FatFS文件操作接口。
本文分享自华为云社区《鸿蒙轻内核M核源码分析系列二一 03 文件系统FatFS》,作者:zhushy。
FAT文件系统是File Allocation Table(文件配置表)的简称,主要包括DBR区、FAT区、DATA区三个区域。其中,FAT区各个表项记录存储设备中对应簇的信息,包括簇是否被使用、文件下一个簇的编号、是否文件结尾等。FAT文件系统有FAT12、FAT16、FAT32等多种格式,其中,12、16、32表示对应格式中FAT表项的比特数。FAT文件系统支持多种介质,特别在可移动存储介质(U盘、SD卡、移动硬盘等)上广泛使用,使嵌入式设备和Windows、Linux等桌面系统保持很好的兼容性,方便用户管理操作文件。LiteOS-M内核支持FAT12、FAT16与FAT32三种格式的FAT文件系统,具有代码量小、资源占用小、可裁切、支持多种物理介质等特性,并且与Windows、Linux等系统保持兼容,支持多设备、多分区识别等功能。LiteOS-M内核支持硬盘多分区,可以在主分区以及逻辑分区上创建FAT文件系统。
本文先介绍下FatFS文件系统结构体的结构体和全局变量,然后分析下FatFS文件操作接口。文中所涉及的源码,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。
1、FatFS文件系统结构体介绍
会分2部分来介绍结构体部分,先介绍FatFS文件系统的结构体,然后介绍LiteOS-M内核中提供的和FatFS相关的一些结构体。
1.1 FatFS的结构体
在openharmony/third_party/FatFs/source/ff.h头文件中定义FatFS的结构体,我们先简单了解下,后文会使用到的。
先看下相关的宏定义,包含文件访问模式(File access mode),格式化选项(Format options)等等。文件打开方式和POSIX文件打开选项不一致,需要转换,后文会涉及。
/*--------------------------------------------------------------*/
/* Flags and offset address */
/* File access mode and open method flags (3rd argument of f_open) */
#define FA_READ 0x01
#define FA_WRITE 0x02
#define FA_OPEN_EXISTING 0x00
#define FA_CREATE_NEW 0x04
#define FA_CREATE_ALWAYS 0x08
#define FA_OPEN_ALWAYS 0x10
#define FA_OPEN_APPEND 0x30 /* Fast seek controls (2nd argument of f_lseek) */
#define CREATE_LINKMAP ((FSIZE_t)0 - 1) /* Format options (2nd argument of f_mkfs) */
#define FM_FAT 0x01
#define FM_FAT32 0x02
#define FM_ANY 0x07
#define FM_SFD 0x08
......
在openharmony/third_party/FatFs/source/ffconf.h头文件中定义FatFS的一些配置信息。如下文的驱动和卷的配置信息等。对于LiteOS-M,默认是支持4个卷。宏定义FS_MAX_SS表示扇区大小sector size。
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/ #ifndef __LITEOS_M__
#define FF_VOLUMES LOSCFG_FS_FAT_VOLUMES
#else
#define FF_VOLUMES 4
#endif
/* Number of volumes (logical drives) to be used. (1-10) */ #ifdef LOSCFG_FS_FAT_VIRTUAL_PARTITION
#define _DEFAULT_VIRVOLUEMS 4
#define _MIN_CLST 0x4000
#define _FLOAT_ACC 0.00000001
#endif #ifndef __LITEOS_M__
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
#else
#define FF_STR_VOLUME_ID 2
#endif
#define FF_MULTI_PARTITION 1 #define FF_MIN_SS 512
#ifndef __LITEOS_M__
#define FF_MAX_SS 4096
#else
#define FF_MAX_SS FS_MAX_SS
#endif
对于适配LiteOS-M内核的开发板,使用FatFS文件系统时,需要提供头文件liteos_m\board\fs\fs_config.h,例如:openharmony\device\qemu\arm_mps2_an386\liteos_m\board\fs\fs_config.h。
#define FF_VOLUME_STRS "system", "inner", "update", "user"
#define FS_MAX_SS 512 #define FAT_MAX_OPEN_FILES 50
接下来看看重要的结构体。结构体FATFS是FatFS文件系统类型结构体。成员变量BYTE fs_type等0时表示未挂载,挂载后一般取值为FS_FAT12、FS_FAT16或FS_FAT32;WORD id表示卷的挂载编号。 其他成员变量可以暂不了解。
/* Filesystem object structure (FATFS) */ typedef struct {
BYTE fs_type; /* Filesystem type (0:not mounted) */
BYTE pdrv; /* Associated physical drive */
BYTE n_fats; /* Number of FATs (1 or 2) */
BYTE wflag; /* win[] flag (b0:dirty) */
BYTE fsi_flag; /* FSINFO flags (b7:disabled, b0:dirty) */
WORD id; /* Volume mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
WORD csize; /* Cluster size [sectors] */
#if FF_MAX_SS != FF_MIN_SS
size_t ssize; /* Sector size (512, 1024, 2048 or 4096) */
#endif
#if FF_USE_LFN
WCHAR* lfnbuf; /* LFN working buffer */
#endif
#if FF_FS_REENTRANT
FF_SYNC_t sobj; /* Identifier of sync object */
#endif
#if !FF_FS_READONLY
DWORD last_clst; /* Last allocated cluster */
DWORD free_clst; /* Number of free clusters */
#endif
#if FF_FS_RPATH
DWORD cdir; /* Current directory start cluster (0:root) */
#endif
DWORD n_fatent; /* Number of FAT entries, = number of clusters + 2 */
DWORD fsize; /* Sectors per FAT */
LBA_t volbase; /* Volume base sector */
LBA_t fatbase; /* FAT base sector */
LBA_t dirbase; /* Root directory base sector/cluster */
LBA_t database; /* Data base sector */
LBA_t winsect; /* Current sector appearing in the win[] */
BYTE* win; /* Disk access window for Directory, FAT (and file data at tiny cfg) */ #ifdef LOSCFG_FS_FAT_VIRTUAL_PARTITION
DWORD st_clst;
DWORD ct_clst;
BYTE vir_flag; /* Flag of Virtual Filesystem Object, b0 : 1 for virtual Fatfs object, 0 for reality Fatfs object */
BYTE vir_avail;
DWORD vir_amount;
VOID* parent_fs; /* Point to the reality Fatfs object, only available in virtual Fatfs object */
CHAR namelabel[_MAX_ENTRYLENGTH + 1]; /* The name label point to the each virtual Fatfs object ,only available in virtual Fatfs obj */
VOID** child_fs; /* Point to the child Fatfs object ,only available in reality Fatfs object */
#endif
#ifndef __LITEOS_M__
int fs_uid;
int fs_gid;
mode_t fs_mode;
#endif
unsigned short fs_dmask;
unsigned short fs_fmask;
} FATFS;
结构体FIL、DIR分别是FatFS的文件和目录类型结构体,DIR是__dirstream结构体的别名,一般在Musl或Newlib C库的文件dirent.h会有typedef struct __dirstream DIR;。这两个结构体都包含FFOBJID obj这个成员变量,FFOBJID结构体体包含FATFS* fs成员,可以关联文件卷信息。暂不需要关心其他成员变量细节,知道结构体的用途即可。
/* Object ID and allocation information (FFOBJID) */ typedef struct {
FATFS* fs; /* Pointer to the hosting volume of this object */
WORD id; /* Hosting volume mount ID */
BYTE attr; /* Object attribute */
BYTE stat; /* Object chain status (b1-0: =0:not contiguous, =2:contiguous, =3:fragmented in this session, b2:sub-directory stretched) */
DWORD sclust; /* Object data start cluster (0:no cluster or root directory) */
FSIZE_t objsize; /* Object size (valid when sclust != 0) */
#if FF_FS_LOCK
UINT lockid; /* File lock ID origin from 1 (index of file semaphore table Files[]) */
#endif
} FFOBJID; /* File object structure (FIL) */ typedef struct {
FFOBJID obj; /* Object identifier (must be the 1st member to detect invalid object pointer) */
BYTE flag; /* File status flags */
BYTE err; /* Abort flag (error code) */
FSIZE_t fptr; /* File read/write pointer (Zeroed on file open) */
DWORD clust; /* Current cluster of fpter (invalid when fptr is 0) */
LBA_t sect; /* Sector number appearing in buf[] (0:invalid) */
#if !FF_FS_READONLY
LBA_t dir_sect; /* Sector number containing the directory entry */
BYTE* dir_ptr; /* Pointer to the directory entry in the win[] */
#endif
#if FF_USE_FASTSEEK
DWORD* cltbl; /* Pointer to the cluster link map table (nulled on open, set by application) */
#endif
#if !FF_FS_TINY
BYTE* buf; /* File private data read/write window */
#endif
#ifndef __LITEOS_M__
LOS_DL_LIST fp_entry;
#endif
} FIL;
/* Directory object structure (DIR) */ struct __dirstream {
FFOBJID obj; /* Object identifier */
DWORD dptr; /* Current read/write offset */
DWORD clust; /* Current cluster */
LBA_t sect; /* Current sector (0:Read operation has terminated) */
BYTE* dir; /* Pointer to the directory item in the win[] */
BYTE fn[12]; /* SFN (in/out) {body[8],ext[3],status[1]} */
#if FF_USE_LFN
DWORD blk_ofs; /* Offset of current entry block being processed (0xFFFFFFFF:Invalid) */
#endif
#if FF_USE_FIND
const TCHAR* pat; /* Pointer to the name matching pattern */
#endif
#ifdef LOSCFG_FS_FAT_VIRTUAL_PARTITION
BYTE atrootdir;
#endif
};
结构体FILINFO用于维护文件信息,包含文件修改时间,大小和文件名等信息。
/* File information structure (FILINFO) */ typedef struct {
FSIZE_t fsize; /* File size */
WORD fdate; /* Modified date */
WORD ftime; /* Modified time */
BYTE fattrib; /* File attribute */
#if FF_USE_LFN
TCHAR altname[FF_SFN_BUF + 1];/* Altenative file name */
TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */
#else
TCHAR fname[12 + 1]; /* File name */
#endif
DWORD sclst;
#ifndef __LITEOS_M__
LOS_DL_LIST fp_list;
#endif
} FILINFO;
1.2 LiteOS-M FatFS的结构体
我们来看下在文件components\fs\fatfs\fatfs.c里定义的结构体。结构体FatHandleStruct维护文件相关的信息,该结构体非常简单,在FIL的基础上增加了是否使用成员变量。
typedef struct {
UINT8 useFlag;
FIL fil;
} FatHandleStruct;
2、LiteOS-M FatFS的重要全局变量及操作
了解下文件components\fs\fatfs\fatfs.c中定义的常用全局变量。⑴处的g_handle数组维护文件信息,默认支持的文件数目为FAT_MAX_OPEN_FILES;g_dir数组维护目录信息,默认支持的目录数目为FAT_MAX_OPEN_DIRS。 ⑵处的g_fatfs数组维护每个卷的的文件系统信息,默认文件卷数目FF_VOLUMES为4个。和文件卷相关的变量还有g_volPath数组维护每个卷的字符串路径,g_volWriteEnable数组维护每个卷是否可写。⑶处的g_workBuffer维护每个扇区的缓存。⑷处开始的g_fileNum、g_dirNum分别是文件和目录打开的数目;struct dirent g_retValue是目录项结构体变量,用于函数fatfs_readdir();pthread_mutex_t g_fsMutex是互斥锁变量;⑸处开始的挂载操作变量g_fatfsMnt、文件操作操作全局变量g_fatfsFops,在虚拟文件系统中被使用。
⑴ static FatHandleStruct g_handle[FAT_MAX_OPEN_FILES] = {0};
static DIR g_dir[FAT_MAX_OPEN_DIRS] = {0};
⑵ static FATFS g_fatfs[FF_VOLUMES] = {0};
⑶ static UINT8 g_workBuffer[FF_MAX_SS];
⑷ static UINT32 g_fileNum = 0;
static UINT32 g_dirNum = 0;
static struct dirent g_retValue;
static pthread_mutex_t g_fsMutex = PTHREAD_MUTEX_INITIALIZER; static const char * const g_volPath[FF_VOLUMES] = {FF_VOLUME_STRS};
static BOOL g_volWriteEnable[FF_VOLUMES] = {FALSE};
......
⑸ struct MountOps g_fatfsMnt = {
.Mount = fatfs_mount,
.Umount = fatfs_umount,
.Umount2 = fatfs_umount2,
.Statfs = fatfs_statfs,
}; struct FileOps g_fatfsFops = {
.Mkdir = fatfs_mkdir,
.Unlink = fatfs_unlink,
.Rmdir = fatfs_rmdir,
.Opendir = fatfs_opendir,
.Readdir = fatfs_readdir,
.Closedir = fatfs_closedir,
.Open = fatfs_open,
.Close = fatfs_close,
.Write = fatfs_write,
.Read = fatfs_read,
.Seek = fatfs_lseek,
.Rename = fatfs_rename,
.Getattr = fatfs_stat,
.Fsync = fatfs_fsync,
.Fstat = fatfs_fstat,
};
下文继续介绍下和这些变量相关的内部操作接口。
2.1 文件系统互斥锁
FatFS文件系统使用的是超时加锁。函数FsLock()中,⑴处获取系统实时时间,⑵处设置15秒超时,FS_LOCK_TIMEOUT_SEC默认为15秒。⑶处对互斥量进行加锁,超时后不会再对互斥量加锁。函数FsUnlock()用于解锁。
static int FsLock(void)
{
INT32 ret = 0;
struct timespec absTimeout = {0};
if (osKernelGetState() != osKernelRunning) {
return ret;
}
⑴ ret = clock_gettime(CLOCK_REALTIME, &absTimeout);
if (ret != 0) {
PRINTK("clock gettime err 0x%x!\r\n", errno);
return errno;
}
⑵ absTimeout.tv_sec += FS_LOCK_TIMEOUT_SEC;
⑶ ret = pthread_mutex_timedlock(&g_fsMutex, &absTimeout);
return ret;
} static void FsUnlock(void)
{
if (osKernelGetState() != osKernelRunning) {
return;
}
(void)pthread_mutex_unlock(&g_fsMutex);
}
2.2 判断文件描述符有效性
函数IsValidFd()用于判断文件描述符的是否有效,如果文件描述符超出有效范围,或者文件未使用状态,返回false,否则返回true。
static bool IsValidFd(int fd)
{
if ((fd < 0) || (fd >= FAT_MAX_OPEN_FILES) || (g_handle[fd].useFlag == 0)) {
return false;
}
return true;
}
2.3 切换驱动器
函数FsChangeDrive()根据传入的路径切换驱动器(盘符)。字符串数组tmpPath用于保存驱动器名称,其中驱动器名称最大值FS_DRIVE_NAME_MAX_LEN。⑵处处理路径长度大于驱动器名称长度的情况。⑶处从路径中获取驱动器名称,然后调用接口f_chdrive()切换驱动器。在文件操作接口中,会调用该函数来切换驱动器,如fatfs_open、fatfs_unlink、fatfs_stat、fatfs_mkdir、fatfs_opendir、fatfs_rmdir、fatfs_rename和fatfs_statfs,这些函数的参数涉及文件路径char *path或者目录char *dirName。
static int FsChangeDrive(const char *path)
{
INT32 res;
⑴ CHAR tmpPath[FS_DRIVE_NAME_MAX_LEN] = { "/" }; /* the max name length of different parts is 16 */
errno_t retErr;
UINT16 pathLen;
pathLen = strlen((char const *)path);
/* make sure the path begin with "/", the path like /xxx/yyy/... */
⑵ if (pathLen >= (FS_DRIVE_NAME_MAX_LEN - 1)) {
/* 2: except first flag "/" and last end flag */
pathLen = FS_DRIVE_NAME_MAX_LEN - 2;
} ⑶ retErr = strncpy_s(tmpPath + 1, (FS_DRIVE_NAME_MAX_LEN - 1), (char const *)path, pathLen);
if (retErr != EOK) {
return FS_FAILURE;
} res = f_chdrive(tmpPath);
if (res != FR_OK) {
return FS_FAILURE;
} return FS_SUCCESS;
}
2.4 匹配文件卷
函数FsPartitionMatch()根据传入的文件路径获取对应的卷索引,在挂载、卸载、格式化等接口中使用。⑴处如果传入的是卷名称,获取顶级目录名称,即路径的第一级目录,前后不包含路径分隔符/。⑵如果传入的是路径名称,获取顶级路径,截止到第一个分隔符/。否则执行⑶,赋值路径中的名称。然后遍历每一个卷,如果获取的顶级目录名称等于卷名称,则返回对应的卷数组索引。否则返回FS_FAILURE。
static int FsPartitionMatch(const char *path, int flag)
{
INT32 ret;
UINT32 index;
CHAR tmpName[FF_MAX_LFN] = {0}; if (path == NULL) {
return FS_FAILURE;
} switch ((UINT32)flag & NAME_MASK) {
case VOLUME_NAME:
⑴ ret = sscanf_s(path, "/%[^/]", tmpName, FF_MAX_LFN);
if (ret <= 0) {
return FS_FAILURE;
}
break;
case PATH_NAME:
⑵ ret = sscanf_s(path, "%[^/]", tmpName, FF_MAX_LFN);
if (ret <= 0) {
return FS_FAILURE;
}
break;
case PART_NAME:
default:
⑶ ret = strcpy_s(tmpName, FF_MAX_LFN, path);
if (ret != EOK) {
return FS_FAILURE;
}
} for (index = 0; index < FF_VOLUMES; index++) {
⑷ if (strcmp(tmpName, g_volPath[index]) == 0) {
return index;
}
}
return FS_FAILURE;
}
2.5 判断文件卷是否可写
函数FsCheckByPath()、FsCheckByID()用于判断文件卷是否可写,传递参数不同。前者传入的是文件路径,转化为卷索引后判断。后者传入的是挂载编号,遍历每一个卷,判断相应卷的编号与传入参数是否相等。
static bool FsCheckByPath(const char *path)
{
INT32 index; index = FsPartitionMatch(path, PATH_NAME);
if (index == FS_FAILURE) {
return FS_FAILURE;
} return g_volWriteEnable[index];
} static bool FsCheckByID(int id)
{
INT32 index; for (index = 0; index < FF_VOLUMES; index++) {
if (g_fatfs[index].id == id) {
return g_volWriteEnable[index];
}
}
return false;
}
2.6 标签转换
函数FatFsGetMode()用于把POSIX格式的文件打开标签转换为FatFS文件系统格式的文件打开标签。FatfsErrno()把FatFS文件系统格式的错误号转换为POSIX格式的错误号。
static unsigned int FatFsGetMode(int oflags)
{
UINT32 fmode = FA_READ; if ((UINT32)oflags & O_WRONLY) {
fmode |= FA_WRITE;
} if (((UINT32)oflags & O_ACCMODE) & O_RDWR) {
fmode |= FA_WRITE;
}
/* Creates a new file if the file is not existing, otherwise, just open it. */
if ((UINT32)oflags & O_CREAT) {
fmode |= FA_OPEN_ALWAYS;
/* Creates a new file. If the file already exists, the function shall fail. */
if ((UINT32)oflags & O_EXCL) {
fmode |= FA_CREATE_NEW;
}
}
/* Creates a new file. If the file already exists, its length shall be truncated to 0. */
if ((UINT32)oflags & O_TRUNC) {
fmode |= FA_CREATE_ALWAYS;
} return fmode;
} static int FatfsErrno(int result)
{
INT32 status = 0; if (result < 0) {
return result;
} /* FatFs errno to Libc errno */
switch (result) {
case FR_OK:
break; case FR_NO_FILE:
case FR_NO_PATH:
case FR_NO_FILESYSTEM:
status = ENOENT;
break;
......
default:
status = result;
break;
} return status;
}
3、LiteOS-M FATFS的文件系统操作接口
快速记录下各个操作接口,对每个接口的用途用法不再描述。可以参考之前的系列文章,《鸿蒙轻内核M核源码分析系列十九 Musl LibC》中介绍了相关的接口,那些接口会调用VFS文件系统中操作接口,然后进一步调用FatFS文件操作接口。
3.1 挂载和卸载操作
先看下挂载操作,FatFS支持重新挂载操作。如果挂载选项包含MS_REMOUNT时,会调用函数Remount()重新挂载。函数Remount()中,⑴处调用FsPartitionMatch()获取卷索引,⑵处如果卷未被挂载,不允许重新挂载,返回错误码。⑶处设置对应的卷是否可读可写标记。由此看来,重新挂载,主要是更新卷的可读可写能力。
看下挂载函数fatfs_mount(),⑷处开始判断参数有效性,不能为空,文件系统类型必须为“fat”,⑸处调用FsPartitionMatch()获取卷索引,⑹处如果卷已经被挂载,则返回错误码。⑺处调用f_mount()实现挂载,第3个参数1表示立即挂载。⑻设置对应的卷是否可读可写标记。
static int Remount(const char *path, unsigned long mountflags)
{
INT32 index; ⑴ index = FsPartitionMatch(path, PART_NAME);
if (index == FS_FAILURE) {
PRINTK("Wrong volume path!\r\n");
errno = ENOENT;
return FS_FAILURE;
} /* remount is not allowed when the device is not mounted. */
⑵ if (g_fatfs[index].fs_type == 0) {
errno = EINVAL;
return FS_FAILURE;
}
⑶ g_volWriteEnable[index] = (mountflags & MS_RDONLY) ? FALSE : TRUE; return FS_SUCCESS;
}
......
int fatfs_mount(const char *source, const char *target,
const char *filesystemtype, unsigned long mountflags,
const void *data)
{
INT32 index;
FRESULT res;
INT32 ret; ⑷ if ((target == NULL) || (filesystemtype == NULL)) {
errno = EFAULT;
return FS_FAILURE;
} ret = FsLock();
if (ret != 0) {
errno = ret;
return FS_FAILURE;
} if (mountflags & MS_REMOUNT) {
ret = Remount(target, mountflags);
goto OUT;
} if (strcmp(filesystemtype, "fat") != 0) {
errno = ENODEV;
ret = FS_FAILURE;
goto OUT;
} ⑸ index = FsPartitionMatch(target, VOLUME_NAME);
if (index == FS_FAILURE) {
errno = ENODEV;
ret = FS_FAILURE;
goto OUT;
} /* If the volume has been mounted */
⑹ if (g_fatfs[index].fs_type != 0) {
errno = EBUSY;
ret = FS_FAILURE;
goto OUT;
} ⑺ res = f_mount(&g_fatfs[index], target, 1);
if (res != FR_OK) {
errno = FatfsErrno(res);
ret = FS_FAILURE;
goto OUT;
} ⑻ g_volWriteEnable[index] = (mountflags & MS_RDONLY) ? FALSE : TRUE;
ret = FS_SUCCESS; OUT:
FsUnlock();
return ret;
}
接下来,看下卸载操作。函数fatfs_umount()中,先进行参数有效性,是否挂载等基础检查,⑴处调用函数f_checkopenlock()来判断要卸载的卷中是否有打开的文件或目录,⑵处调用f_mount(),第一个参数为NULL,表示卸载target指定的文件系统;,第3个参数0表示不需要挂载。如果卸载错误,转换相应的错误码。⑶处如果磁盘访问窗口(Disk access window for Directory)不为空,执行相应的释放操作。⑷处把文件卷数组对应的元素置零。
函数CloseAll()根据文件卷编号,遍历每一个打开的文件和目录进行关闭。函数fatfs_umount2()中,⑸处表示支持的卸载选项有:MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW。⑹处处理强制卸载的情形,会首先关闭打开的文件和目录,然后再去执行⑺实现卸载操作。
int fatfs_umount(const char *target)
{
FRESULT res;
INT32 ret;
INT32 index; if (target == NULL) {
errno = EFAULT;
return FS_FAILURE;
} ret = FsLock();
if (ret != 0) {
errno = ret;
return FS_FAILURE;
} index = FsPartitionMatch(target, VOLUME_NAME);
if (index == FS_FAILURE) {
errno = ENOENT;
ret = FS_FAILURE;
goto OUT;
} /* The volume is not mounted */
if (g_fatfs[index].fs_type == 0) {
errno = EINVAL;
ret = FS_FAILURE;
goto OUT;
} /* umount is not allowed when a file or diretory is opened. */
⑴ if (f_checkopenlock(index) != FR_OK) {
errno = EBUSY;
ret = FS_FAILURE;
goto OUT;
} ⑵ res = f_mount((FATFS *)NULL, target, 0);
if (res != FR_OK) {
errno = FatfsErrno(res);
ret = FS_FAILURE;
goto OUT;
} ⑶ if (g_fatfs[index].win != NULL) {
ff_memfree(g_fatfs[index].win);
} ⑷ (void)memset_s(&g_fatfs[index], sizeof(FATFS), 0x0, sizeof(FATFS)); ret = FS_SUCCESS; OUT:
FsUnlock();
return ret;
} static int CloseAll(int index)
{
INT32 i;
FRESULT res; for (i = 0; i < FAT_MAX_OPEN_FILES; i++) {
if (g_fileNum <= 0) {
break;
}
if ((g_handle[i].useFlag == 1) && (g_handle[i].fil.obj.fs == &g_fatfs[index])) {
res = f_close(&g_handle[i].fil);
if (res != FR_OK) {
errno = FatfsErrno(res);
return FS_FAILURE;
}
(void)memset_s(&g_handle[i], sizeof(FatHandleStruct), 0x0, sizeof(FatHandleStruct));
g_fileNum--;
}
} for (i = 0; i < FAT_MAX_OPEN_DIRS; i++) {
if (g_dirNum <= 0) {
break;
}
if (g_dir[i].obj.fs == &g_fatfs[index]) {
res = f_closedir(&g_dir[i]);
if (res != FR_OK) {
errno = FatfsErrno(res);
return FS_FAILURE;
}
(void)memset_s(&g_dir[i], sizeof(DIR), 0x0, sizeof(DIR));
g_dirNum--;
}
} return FS_SUCCESS;
} int fatfs_umount2(const char *target, int flag)
{
INT32 index;
INT32 ret;
UINT32 flags;
FRESULT res; if (target == NULL) {
errno = EFAULT;
return FS_FAILURE;
} ⑸ flags = MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW;
if ((UINT32)flag & ~flags) {
errno = EINVAL;
return FS_FAILURE;
} ret = FsLock();
if (ret != 0) {
errno = ret;
return FS_FAILURE;
} index = FsPartitionMatch(target, VOLUME_NAME);
if (index == FS_FAILURE) {
errno = ENOENT;
ret = FS_FAILURE;
goto OUT;
} /* The volume is not mounted */
if (g_fatfs[index].fs_type == 0) {
errno = EINVAL;
ret = FS_FAILURE;
goto OUT;
} ⑹ if ((UINT32)flag & MNT_FORCE) {
ret = CloseAll(index);
if (ret != FS_SUCCESS) {
goto OUT;
}
} ⑺ res = f_mount((FATFS *)NULL, target, 0);
if (res != FR_OK) {
errno = FatfsErrno(res);
ret = FS_FAILURE;
goto OUT;
} if (g_fatfs[index].win != NULL) {
ff_memfree(g_fatfs[index].win);
} (void)memset_s(&g_fatfs[index], sizeof(FATFS), 0x0, sizeof(FATFS));
ret = FS_SUCCESS; OUT:
FsUnlock();
return ret;
}
3.2 文件目录操作接口
文件目录操作接口包含fatfs_mkdir、fatfs_unlink、fatfs_rmdir、fatfs_readdir、fatfs_closedir、fatfs_open、fatfs_close等等,会进一步调用FatFS的文件目录操作接口进行封装,代码比较简单,自行阅读即可,部分代码片段如下。
......
int fatfs_close(int fd)
{
FRESULT res;
INT32 ret; ret = FsLock();
if (ret != 0) {
errno = ret;
return FS_FAILURE;
} if (!IsValidFd(fd)) {
FsUnlock();
errno = EBADF;
return FS_FAILURE;
} if (g_handle[fd].fil.obj.fs == NULL) {
FsUnlock();
errno = ENOENT;
return FS_FAILURE;
} res = f_close(&g_handle[fd].fil);
if (res != FR_OK) {
PRINTK("FAT close err 0x%x!\r\n", res);
FsUnlock();
errno = FatfsErrno(res);
return FS_FAILURE;
} #if !FF_FS_TINY
if (g_handle[fd].fil.buf != NULL) {
(void)ff_memfree(g_handle[fd].fil.buf);
}
#endif (void)memset_s(&g_handle[fd], sizeof(FatHandleStruct), 0x0, sizeof(FatHandleStruct)); if (g_fileNum > 0) {
g_fileNum--;
} FsUnlock(); return FS_SUCCESS;
}
......
小结
本文介绍了FatFS的结构体和全局变量,全局变量的操作接口,分析了下FatFS文件操作接口。时间仓促和能力关系,如有失误,欢迎指正。感谢阅读,如有任何问题、建议,都可以博客下留言给我,谢谢。
参考资料
- HarmonyOS Device>文档指南>基础能力-FatFS
更多学习内容,请关注IoT物联网社区
鸿蒙轻内核源码分析:文件系统FatFS的更多相关文章
- 鸿蒙轻内核源码分析:文件系统LittleFS
摘要:本文先介绍下LFS文件系统结构体的结构体和全局变量,然后分析下LFS文件操作接口. 本文分享自华为云社区<# 鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS>,作者: ...
- 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 百篇博客分析OpenHarmony源码 | v63.01
百篇博客系列篇.本篇为: v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...
- 鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基础 | 百篇博客分析OpenHarmony源码 | v68.01
子曰:"质胜文则野,文胜质则史.文质彬彬,然后君子." <论语>:雍也篇 百篇博客系列篇.本篇为: v68.xx 鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基 ...
- 鸿蒙内核源码分析(根文件系统) | 先挂到`/`上的文件系统 | 百篇博客分析OpenHarmony源码 | v66.01
百篇博客系列篇.本篇为: v66.xx 鸿蒙内核源码分析(根文件系统) | 先挂到/上的文件系统 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...
- 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载 | 百篇博客分析OpenHarmony源码 | v65.01
百篇博客系列篇.本篇为: v65.xx 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...
- 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 百篇博客分析OpenHarmony源码 | v64.01
百篇博客系列篇.本篇为: v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么 ...
- 鸿蒙内核源码分析(管道文件篇) | 如何降低数据流动成本 | 百篇博客分析OpenHarmony源码 | v70.01
百篇博客系列篇.本篇为: v70.xx 鸿蒙内核源码分析(管道文件篇) | 如何降低数据流动成本 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...
- 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 百篇博客分析OpenHarmony源码 | v69.01
百篇博客系列篇.本篇为: v69.xx 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说 ...
- 鸿蒙内核源码分析(字符设备篇) | 字节为单位读写的设备 | 百篇博客分析OpenHarmony源码 | v67.01
百篇博客系列篇.本篇为: v67.xx 鸿蒙内核源码分析(字符设备篇) | 字节为单位读写的设备 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...
随机推荐
- Denoising Diffusion Probabilistic Models (DDPM)
目录 概 主要内容 Diffusion models reverse process forward process 变分界 损失求解 最后的算法 细节 代码 Ho J., Jain A. and A ...
- Unsupervised Domain Adaptation by Backpropagation
目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...
- [数学]高数部分-Part III 中值定理与一元微分学应用
Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...
- [opencv]二维码识别率提升方案-resize调整
这里采用循环resize的方式,对二维码图像进行放缩. 识别到name(二维码结果)不为空,则立即退出循环 //循环识别 for (int i = 1;name.empty(); i++){ resi ...
- 《MySQL数据操作与查询》- 维护学生信息、老师信息和成绩信息 支持按多种条件组合查询学生信息和成绩信息
综合项目需求 一.系统整体功能 系统需支持以下功能: 维护学生信息.老师信息和成绩信息 支持按多种条件组合查询学生信息和成绩信息 学生 Student(id,班级id,学号,姓名,性别,电话,地址,出 ...
- AWS 15年(2):云原生兴起
AWS创立云计算15年来,没有一个行业不跟云计算相关,没有任何一个颠覆性创新缺少云计算的参与,云已经是不可逆的滚滚洪流. AWS这15年,是云原生服务从无到有再到基本成熟的15年,是云原生应用兴起的1 ...
- 新环境chart包helmlint校验
在iot目录内可以执行helm lint iot-api 去校验
- 解决eclipse中Findbugs检查不生效的问题
eclipse安装了Findbugs插件, 但是在eclipse中发现不了bug错误, 具体表现为指定的类存在findbugs, 已经通过其他工具检查出来, 但是在eclipse中就是无法报告错误. ...
- GeoWave实践2:使用命令行将本地矢量数据注入hbase并发布至GeoServer
目录 步骤 补充 步骤 在GeoWave所在的节点打开两个会话窗口. 会话1 //运行GeoServer,默认端口8080 geowave gs run 会话2 //为GeoWave创建数据库Test ...
- c# - 数据类型转换和控制台输入
1.使用c#自带的 Convert类转换数据类型 2.源码 using System; namespace ConsoleApp1.toValue { class excutejiecheng { s ...