题目

瓶颈生成树的裸题。可以查看这个来获取更多信息。

他问的是能够在所有树上自由穿梭的猴子个数,那我只需要算出这张图上最小生成树中权值最大的边,和每个猴子的最大跳跃长度进行比较即可。

因为我用的是 \(\text{Kruscal}\) 算法求最小生成树,所以可以保证我搞出来的那个最小生成树一定是这张图上的一个瓶颈生成树,所以我只需要记录我加进去的边中权值最大的那个(即我最后加的那条边)即可。复杂度 \(O(n^2\log n^2)\),可以通过本题。

代码:

#include<stdio.h>
#include<math.h>
#include<algorithm>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define swap(a, b) ((a) ^= (b) ^= (a) ^= (b))
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io;
ll n, m;
struct E {
ll u, v;
double w;
} e[1000010];
struct node {
ll x, y;
} point[10010];
ll a[10010], cnt, fa[10010];
double maxdis;
double dis(ll x_1, ll y_1, ll x_2, ll y_2) {
return sqrt((ll)(x_1 - x_2) * (x_1 - x_2) + (ll)(y_1 - y_2) * (y_1 - y_2));
}
ll find(ll x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
bool cmp(const E& x, const E& y) {
return x.w < y.w;
}
void kruskal() {
std::sort(e + 1, e + cnt + 1, cmp);
rep(i, 1, m) fa[i] = i;
rep(i, 1, cnt) {
ll u = e[i].u, v = e[i].v;
if(find(u) != find(v)) {
ll _u = find(u), _v = find(v);
fa[_u] = _v;
maxdis = max(maxdis, e[i].w);
/*printf("%d %d\n", u, v);*/
}
}
}
int main() {
ll ans = 0;
read(n);
rep(i, 1, n) read(a[i]);
read(m);
rep(i, 1, m) read(point[i].x), read(point[i].y);
rep(i, 1, m) rep(j, i + 1, m) e[++cnt].u = i, e[cnt].v = j, e[cnt].w = dis(point[i].x, point[i].y, point[j].x, point[j].y);
/*rep(i, 1, cnt) printf("%d %d %f\n", e[i].u, e[i].v, e[i].w);*/
kruskal();
rep(i, 1, n) if(a[i] >= maxdis) ++ans;
print(ans);
}

\(\text{kruscal}\)函数体内第谔行写了rep(i,1,n)调了半个小时。

洛谷P2504题解的更多相关文章

  1. 洛谷 P2504 [HAOI2006]聪明的猴子

    洛谷 P2504 [HAOI2006]聪明的猴子 题目描述 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地表还是被大水淹没着,部分植物的树冠露在水 ...

  2. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  3. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  4. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  5. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  6. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

  7. 洛谷P2504 [HAOI2006]聪明的猴子题解

    题目 记录悲伤 已知猴子的数量以及猴子跳的最大距离 已知数的数量以及树的坐标 最小生成树 每两棵树之间的距离需要枚举来计算 算出最大值之后再与n只猴子进行比较记录答案 需要注意 在使用最小生成树的时候 ...

  8. 【洛谷】题解 P1056 【排座椅】

    题目链接 因为题目说输入保证会交头接耳的同学前后相邻或者左右相邻,所以一对同学要分开有且只有一条唯一的通道才能把他们分开. 于是可以吧这条通道累加到一个数组里面.应为题目要求纵列的通道和横列的通道条数 ...

  9. 洛谷—— P2504 [HAOI2006]聪明的猴子

    P2504 [HAOI2006]聪明的猴子 题目描述 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地表还是被大水淹没着,部分植物的树冠露在水面上. ...

随机推荐

  1. Golang的一致性哈希实现

    Golang的一致性哈希实现 一致性哈希的具体介绍,可以参考:http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html   1 imp ...

  2. 微软官方 Win 11 “体检工具”太烂了?开发者自己做了一个

    1.Win 10 免费升级到 Win 11 最近微软官方终于宣布了 Windows 11,不仅带来了全新的 UI,而且还有很多新功能:比如支持 Android 应用. 虽然微软官方已说明 Win 10 ...

  3. SpringBoot缓存管理(一) 默认缓存管理

    前言 Spring框架支持透明地向应用程序添加缓存对缓存进行管理,其管理缓存的核心是将缓存应用于操作数据的方法(包括增删查改等),从而减少操作数据的执行次数(主要是查询,直接从缓存中读取数据),同时不 ...

  4. 并发王者课-铂金8:峡谷幽会-看CyclicBarrier如何跨越重峦叠嶂

    欢迎来到<并发王者课>,本文是该系列文章中的第21篇,铂金中的第8篇. 在上一篇文章中,我们介绍了CountDownLatch的用法.在协调多线程的开始和结束时,CountDownLatc ...

  5. 第13章:Kubernetes 鉴权框架与用户权限分配

    1.Kubernetes的安全框架 访问K8S集群的资源需要过三关:认证.鉴权.准入控制 普通用户若要安全访问集群API Server,往往需要证书.Token或者用户名+密码:Pod访问,需要Ser ...

  6. docker安装和配置nginx

    配置nginx docker配置nginx 本机ip是192.168.0.200 docker pull nginx 配置nginx主机 vi /root/docker/nginx/nginx01.c ...

  7. ExtJs4学习(四):Extjs 中id与itemId的区别

       为了方便表示或是指定一个组件的名称,我们通常会使用id或者itemId进行标识命名.(推荐尽量使用itemId,这样可以减少页面唯一标识而产生的冲突) id:   id是作为整个页面的Compo ...

  8. Hibernate框架(一)总结介绍

    作为SSH三大框架之一的Hibernate,是用来把程序的Dao层和数据库打交道用的,它封装了JDBC的步骤,是我们对数据库的操作更加简单,更加快捷.利用Hibernate框架我们就可以不再编写重复的 ...

  9. Python实现 利用朴素贝叶斯模型(NBC)进行问句意图分类

    目录 朴素贝叶斯分类(NBC) 程序简介 分类流程 字典(dict)构造:用于jieba分词和槽值替换 数据集构建 代码分析 另外:点击右下角魔法阵上的[显示目录],可以导航~~ 朴素贝叶斯分类(NB ...

  10. 基于腾讯云Serverless的HTTP服务探活函数

    本文基于 Golang 开发了一款简单易用的拨测云函数,入口函数与腾讯云 Serverless SDK 绑定.与目前腾讯云中默认的拨测函数不同的是, url-tester-func 支持非 200 响 ...