查看是否为分布键查询

postgres=# explain select * from tbase_1 where f1=1;

QUERY PLAN

--------------------------------------------------------------------------------

Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)

Node/s: dn001, dn002

-> Gather (cost=1000.00..7827.20 rows=1 width=14)

Workers Planned: 2

-> Parallel Seq Scan on tbase_1 (cost=0.00..6827.10 rows=1 width=14)

Filter: (f1 = 1)

(6 rows)

postgres=# explain select * from tbase_1 where f2=1;

QUERY PLAN

--------------------------------------------------------------------------------

Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)

Node/s: dn001

-> Gather (cost=1000.00..7827.20 rows=1 width=14)

Workers Planned: 2

-> Parallel Seq Scan on tbase_1 (cost=0.00..6827.10 rows=1 width=14)

Filter: (f2 = 1)

(6 rows)

如上,第一个查询为非分布键查询,需要发往所有节点,这样最慢的节点决定了整个业务的速度,需要保持所有节点的响应性能一致,如第二个查询所示,业务设计查询时尽可能带上分布键。

查看是否使用索引

postgres=# create index tbase_2_f2_idx on tbase_2(f2);

CREATE INDEX

postgres=# explain select * from tbase_2 where f2=1;

QUERY PLAN

-------------------------------------------------------------------------------------

Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)

Node/s: dn001, dn002

-> Index Scan using tbase_2_f2_idx on tbase_2 (cost=0.42..4.44 rows=1 width=14)

Index Cond: (f2 = 1)

(4 rows)

postgres=# explain select * from tbase_2 where f3='1';

QUERY PLAN

--------------------------------------------------------------------------------

Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)

Node/s: dn001, dn002

-> Gather (cost=1000.00..7827.20 rows=1 width=14)

Workers Planned: 2

-> Parallel Seq Scan on tbase_2 (cost=0.00..6827.10 rows=1 width=14)

Filter: (f3 = '1'::text)

(6 rows)

postgres=#

第一个查询使用了索引,第二个没有使用索引,通常情况下,使用索引可以加速查询速度,但索引也会增加更新的开销。

查看是否为分布 key join

postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;

QUERY PLAN

------------------------------------------------------------------------------------------------

Remote Subquery Scan on all (dn001,dn002) (cost=29.80..186.32 rows=3872 width=40)

-> Hash Join (cost=29.80..186.32 rows=3872 width=40)

Hash Cond: (tbase_1.f1 = tbase_2.f1)

-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..158.40 rows=880 width=40)

Distribute results by S: f1

-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=40)

-> Hash (cost=18.80..18.80 rows=880 width=4)

-> Seq Scan on tbase_2 (cost=0.00..18.80 rows=880 width=4)

(8 rows)

postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f2=tbase_2.f1 ;

QUERY PLAN

---------------------------------------------------------------------------------

Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)

Node/s: dn001, dn002

-> Hash Join (cost=18904.69..46257.08 rows=500564 width=14)

Hash Cond: (tbase_1.f2 = tbase_2.f1)

-> Seq Scan on tbase_1 (cost=0.00..9225.64 rows=500564 width=14)

-> Hash (cost=9225.64..9225.64 rows=500564 width=4)

-> Seq Scan on tbase_2 (cost=0.00..9225.64 rows=500564 width=4)

(7 rows)

第一个查询需要数据重分布,而第二个不需要,分布键 join 查询性能会更高。

查看 join 发生的节点

postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;

QUERY PLAN

-----------------------------------------------------------------------------------------------

Hash Join (cost=29.80..186.32 rows=3872 width=40)

Hash Cond: (tbase_1.f1 = tbase_2.f1)

-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..158.40 rows=880 width=40)

-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=40)

-> Hash (cost=126.72..126.72 rows=880 width=4)

-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..126.72 rows=880 width=4)

-> Seq Scan on tbase_2 (cost=0.00..18.80 rows=880 width=4)

(7 rows)

postgres=# set prefer_olap to on;

SET

postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;

QUERY PLAN

------------------------------------------------------------------------------------------------

Remote Subquery Scan on all (dn001,dn002) (cost=29.80..186.32 rows=3872 width=40)

-> Hash Join (cost=29.80..186.32 rows=3872 width=40)

Hash Cond: (tbase_1.f1 = tbase_2.f1)

-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..158.40 rows=880 width=40)

Distribute results by S: f1

-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=40)

-> Hash (cost=18.80..18.80 rows=880 width=4)

-> Seq Scan on tbase_2 (cost=0.00..18.80 rows=880 width=4)

(8 rows)

第一个 join 在 cn 节点执行,第二个在 dn 上重分布后再 join,业务设计上,一般 OLTP 类业务在 cn 上进行少数据量 join ,性能会更好。

查看并行的 worker 数

postgres=# explain select count(1) from tbase_1;

QUERY PLAN

---------------------------------------------------------------------------------------

Finalize Aggregate (cost=118.81..118.83 rows=1 width=8)

-> Remote Subquery Scan on all (dn001,dn002) (cost=118.80..118.81 rows=1 width=0)

-> Partial Aggregate (cost=18.80..18.81 rows=1 width=8)

-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=0)

(4 rows)

postgres=# analyze tbase_1;

ANALYZE

postgres=# explain select count(1) from tbase_1;

QUERY PLAN

----------------------------------------------------------------------------------------------------

Parallel Finalize Aggregate (cost=14728.45..14728.46 rows=1 width=8)

-> Parallel Remote Subquery Scan on all (dn001,dn002) (cost=14728.33..14728.45 rows=1 width=0)

-> Gather (cost=14628.33..14628.44 rows=1 width=8)

Workers Planned: 2

-> Partial Aggregate (cost=13628.33..13628.34 rows=1 width=8)

-> Parallel Seq Scan on tbase_1 (cost=0.00..12586.67 rows=416667 width=0)

(6 rows)

上面第一个查询没走并行,第二个查询 analyze 后走并行才是正确的,建议大数据量更新再执行 analyze。

查看各节点的执行计划是否一致

./tbase_run_sql_dn_master.sh "explain select * from tbase_2 where f2=1"

dn006 --- psql -h 172.16.0.13 -p 11227 -d postgres -U tbase -c "explain select * from tbase_2 where f2=1"

QUERY PLAN

-----------------------------------------------------------------------------

Bitmap Heap Scan on tbase_2 (cost=2.18..7.70 rows=4 width=40)

Recheck Cond: (f2 = 1)

-> Bitmap Index Scan on tbase_2_f2_idx (cost=0.00..2.18 rows=4 width=0)

Index Cond: (f2 = 1)

(4 rows)

dn002 --- psql -h 172.16.0.42 -p 11012 -d postgres -U tbase -c "explain select * from tbase_2 where f2=1"

QUERY PLAN

-------------------------------------------------------------------------------

Index Scan using tbase_2_f2_idx on tbase_2 (cost=0.42..4.44 rows=1 width=14)

Index Cond: (f2 = 1)

(2 rows)

两个 dn 的执行计划不一致,最大可能是数据倾斜或者是执行计划被禁用。

如有可能,DBA 可以配置在系统空闲时执行全库 analyze 和 vacuum。

腾讯云TDSQL PostgreSQL版 -最佳实践 |优化 SQL 语句的更多相关文章

  1. 腾讯云TDSQL MySQL版 - 开发指南 二级分区

    TDSQL MySQL版 目前支持 Range 和 List 两种格式的二级分区,具体建表语法和 MySQL 分区语法类似. 二级分区语法 一级 Hash,二级 List 分区示例如下: MySQL ...

  2. 腾讯云TDSQL MySQL版 - 开发指南 分布式事务

    由于事务操作的数据通常跨多个物理节点,在分布式数据库中,类似方案即称为分布式事务. TDSQL MySQL版 支持普通分布式事务协议和 XA 分布式事务协议.TDSQL MySQL版(内核5.7或以上 ...

  3. 286万QPS!腾讯云TDSQL打造数据库领域的“超音速战机”

    Bloodhound SSC超音速汽车将陆地极限速度提升到1678公里/小时,号称陆地“超音速战斗机”.无独有偶,同样也在2017年,在英特尔®.腾讯金融云团队的共同见证下,腾讯云数据库TDSQL采用 ...

  4. 腾讯云TDSQL审计原理揭秘

    版权声明:本文由孙勇福原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/244 来源:腾云阁 https://www.qclo ...

  5. MaxCompute 构建企业云数据仓库CDW的最佳实践建议

    在本文中阿里云资深产品专家云郎分享了基于阿里云 MaxCompute 构建企业云数据仓库CDW的最佳实践建议. 本文内容根据演讲视频以及PPT整理而成. 大家下午好,我是云郎,之前在甲骨文做企业架构师 ...

  6. 强强联袂!腾讯云TDSQL与国双战略签约,锚定国产数据库巨大市场

    日前,腾讯云计算(北京)有限责任公司与北京国双科技有限公司签署了<国产数据库产品战略合作协议>,双方将在数据库技术方面展开深度合作,通过分布式交易型数据库的联合研发.产品服务体系建设.品牌 ...

  7. 腾讯云TDSQL监控库密码忘记问题解决实战

    首先,给大家介绍一下TDSQL.TDSQL MySQL 版(TDSQL for MySQL)是腾讯打造的一款分布式数据库产品,具备强一致高可用.全球部署架构.分布式水平扩展.高性能.企业级安全等特性, ...

  8. 腾讯云CDB的AI技术实践:CDBTune

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:邢家树,高级工程师,目前就职于腾讯TEG基础架构部数据库团队.腾讯数据库技术团队维护MySQL内核分支TXSQL,100%兼容原生My ...

  9. 揭秘华为云GaussDB(for Influx)最佳实践:hint查询

    摘要:GaussDB(for Influx)通过提供hint功能,在单时间线的查询场景下,性能有大幅度的提升,能有效满足客户某些特定场景的查询需求. 本文分享自华为云社区<华为云GaussDB( ...

随机推荐

  1. [源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark

    [源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark 0x0 ...

  2. Unity 消消乐开发思路

    以简单的方式讲述游戏开发思路,暂时没有实践,如有错误,欢迎各位大佬指错 关卡数据保存方式 数据保存我选用json,可读性强,解析快 消消乐物体处理方式 消消乐物体我将以预制体的方式使用(把物品拖到As ...

  3. Qt 串口通信之使用16进制发送数据的转换方式

    Qt 串口通信之使用16进制发送数据的转换方式 一 概述 有时候在做上位机串口通讯时,经常需要将字符串转成16进制的形式作为发送,借此分析记录一下. 二 需求分析 //假设需要转换的字符:如下 QSt ...

  4. acwing 4 多重背包问题 I

    多重背包 有 n种物品 一共有 m大小的背包,每种物品的价值 大小 个数 为 s[i],v[i],num[i]; #include<bits/stdc++.h>//cmhao #defin ...

  5. 巧用SpringBoot扩展点EnvironmentPostProcessor

    我们的项目是单体项目,使用的是springboot的框架,随着对接的外部服务越来越多,配置文件越来越臃肿..我们将对接的外部服务的代码单独抽离出来形成service依赖,之后以jar包的形式引入,这时 ...

  6. docker搭建数据库高可用方案PXC

    前言 本方案主要目的是学习, 该方案不太合适于企业项目 是什么? 白话点, 是个提供了必要环境的虚拟机(类似于java的导入部分包一样和c++的头文件差不多), 所以它比普通的VMWare或者Virt ...

  7. Java:Java的<<<移位运算符详解

    1) 左移运算(<<)       左移就是把所有位向左移动几位 如:   12 << 2    意思就是12向左移动两位 12的二进制是: 0000 1100 通过这个图我们 ...

  8. Cent OS下安装JDK11

    自己云服务器以前装了个JDK1.7,最近发现出了jdk11,所以修改一下JDK版本: 我这里用的是Xshell和XFtp工具,下载地址:https://www.netsarang.com/downlo ...

  9. 虚拟机centos7环境搭建,系统分区,静态IP配置

    文章目录 1.虚拟机安装centos7 2.系统分区 3.配置静态IP centos7下载地址 http://mirrors.aliyun.com/centos/7/isos/x86_64/ Cent ...

  10. Sql Server(3)运算符的使用

    where 订货日期 between '2017/10/24' and '2017/10/30'  小的写在前面,大的后面,不可以写反 一:运算符的使用 T-SQL的运算符应用指派运算符算术运算符比较 ...