腾讯云TDSQL PostgreSQL版 -最佳实践 |优化 SQL 语句
查看是否为分布键查询
postgres=# explain select * from tbase_1 where f1=1;
QUERY PLAN
--------------------------------------------------------------------------------
Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)
Node/s: dn001, dn002
-> Gather (cost=1000.00..7827.20 rows=1 width=14)
Workers Planned: 2
-> Parallel Seq Scan on tbase_1 (cost=0.00..6827.10 rows=1 width=14)
Filter: (f1 = 1)
(6 rows)
postgres=# explain select * from tbase_1 where f2=1;
QUERY PLAN
--------------------------------------------------------------------------------
Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)
Node/s: dn001
-> Gather (cost=1000.00..7827.20 rows=1 width=14)
Workers Planned: 2
-> Parallel Seq Scan on tbase_1 (cost=0.00..6827.10 rows=1 width=14)
Filter: (f2 = 1)
(6 rows)
如上,第一个查询为非分布键查询,需要发往所有节点,这样最慢的节点决定了整个业务的速度,需要保持所有节点的响应性能一致,如第二个查询所示,业务设计查询时尽可能带上分布键。
查看是否使用索引
postgres=# create index tbase_2_f2_idx on tbase_2(f2);
CREATE INDEX
postgres=# explain select * from tbase_2 where f2=1;
QUERY PLAN
-------------------------------------------------------------------------------------
Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)
Node/s: dn001, dn002
-> Index Scan using tbase_2_f2_idx on tbase_2 (cost=0.42..4.44 rows=1 width=14)
Index Cond: (f2 = 1)
(4 rows)
postgres=# explain select * from tbase_2 where f3='1';
QUERY PLAN
--------------------------------------------------------------------------------
Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)
Node/s: dn001, dn002
-> Gather (cost=1000.00..7827.20 rows=1 width=14)
Workers Planned: 2
-> Parallel Seq Scan on tbase_2 (cost=0.00..6827.10 rows=1 width=14)
Filter: (f3 = '1'::text)
(6 rows)
postgres=#
第一个查询使用了索引,第二个没有使用索引,通常情况下,使用索引可以加速查询速度,但索引也会增加更新的开销。
查看是否为分布 key join
postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;
QUERY PLAN
------------------------------------------------------------------------------------------------
Remote Subquery Scan on all (dn001,dn002) (cost=29.80..186.32 rows=3872 width=40)
-> Hash Join (cost=29.80..186.32 rows=3872 width=40)
Hash Cond: (tbase_1.f1 = tbase_2.f1)
-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..158.40 rows=880 width=40)
Distribute results by S: f1
-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=40)
-> Hash (cost=18.80..18.80 rows=880 width=4)
-> Seq Scan on tbase_2 (cost=0.00..18.80 rows=880 width=4)
(8 rows)
postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f2=tbase_2.f1 ;
QUERY PLAN
---------------------------------------------------------------------------------
Remote Fast Query Execution (cost=0.00..0.00 rows=0 width=0)
Node/s: dn001, dn002
-> Hash Join (cost=18904.69..46257.08 rows=500564 width=14)
Hash Cond: (tbase_1.f2 = tbase_2.f1)
-> Seq Scan on tbase_1 (cost=0.00..9225.64 rows=500564 width=14)
-> Hash (cost=9225.64..9225.64 rows=500564 width=4)
-> Seq Scan on tbase_2 (cost=0.00..9225.64 rows=500564 width=4)
(7 rows)
第一个查询需要数据重分布,而第二个不需要,分布键 join 查询性能会更高。
查看 join 发生的节点
postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;
QUERY PLAN
-----------------------------------------------------------------------------------------------
Hash Join (cost=29.80..186.32 rows=3872 width=40)
Hash Cond: (tbase_1.f1 = tbase_2.f1)
-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..158.40 rows=880 width=40)
-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=40)
-> Hash (cost=126.72..126.72 rows=880 width=4)
-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..126.72 rows=880 width=4)
-> Seq Scan on tbase_2 (cost=0.00..18.80 rows=880 width=4)
(7 rows)
postgres=# set prefer_olap to on;
SET
postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;
QUERY PLAN
------------------------------------------------------------------------------------------------
Remote Subquery Scan on all (dn001,dn002) (cost=29.80..186.32 rows=3872 width=40)
-> Hash Join (cost=29.80..186.32 rows=3872 width=40)
Hash Cond: (tbase_1.f1 = tbase_2.f1)
-> Remote Subquery Scan on all (dn001,dn002) (cost=100.00..158.40 rows=880 width=40)
Distribute results by S: f1
-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=40)
-> Hash (cost=18.80..18.80 rows=880 width=4)
-> Seq Scan on tbase_2 (cost=0.00..18.80 rows=880 width=4)
(8 rows)
第一个 join 在 cn 节点执行,第二个在 dn 上重分布后再 join,业务设计上,一般 OLTP 类业务在 cn 上进行少数据量 join ,性能会更好。
查看并行的 worker 数
postgres=# explain select count(1) from tbase_1;
QUERY PLAN
---------------------------------------------------------------------------------------
Finalize Aggregate (cost=118.81..118.83 rows=1 width=8)
-> Remote Subquery Scan on all (dn001,dn002) (cost=118.80..118.81 rows=1 width=0)
-> Partial Aggregate (cost=18.80..18.81 rows=1 width=8)
-> Seq Scan on tbase_1 (cost=0.00..18.80 rows=880 width=0)
(4 rows)
postgres=# analyze tbase_1;
ANALYZE
postgres=# explain select count(1) from tbase_1;
QUERY PLAN
----------------------------------------------------------------------------------------------------
Parallel Finalize Aggregate (cost=14728.45..14728.46 rows=1 width=8)
-> Parallel Remote Subquery Scan on all (dn001,dn002) (cost=14728.33..14728.45 rows=1 width=0)
-> Gather (cost=14628.33..14628.44 rows=1 width=8)
Workers Planned: 2
-> Partial Aggregate (cost=13628.33..13628.34 rows=1 width=8)
-> Parallel Seq Scan on tbase_1 (cost=0.00..12586.67 rows=416667 width=0)
(6 rows)
上面第一个查询没走并行,第二个查询 analyze 后走并行才是正确的,建议大数据量更新再执行 analyze。
查看各节点的执行计划是否一致
./tbase_run_sql_dn_master.sh "explain select * from tbase_2 where f2=1"
dn006 --- psql -h 172.16.0.13 -p 11227 -d postgres -U tbase -c "explain select * from tbase_2 where f2=1"
QUERY PLAN
-----------------------------------------------------------------------------
Bitmap Heap Scan on tbase_2 (cost=2.18..7.70 rows=4 width=40)
Recheck Cond: (f2 = 1)
-> Bitmap Index Scan on tbase_2_f2_idx (cost=0.00..2.18 rows=4 width=0)
Index Cond: (f2 = 1)
(4 rows)
dn002 --- psql -h 172.16.0.42 -p 11012 -d postgres -U tbase -c "explain select * from tbase_2 where f2=1"
QUERY PLAN
-------------------------------------------------------------------------------
Index Scan using tbase_2_f2_idx on tbase_2 (cost=0.42..4.44 rows=1 width=14)
Index Cond: (f2 = 1)
(2 rows)
两个 dn 的执行计划不一致,最大可能是数据倾斜或者是执行计划被禁用。
如有可能,DBA 可以配置在系统空闲时执行全库 analyze 和 vacuum。
腾讯云TDSQL PostgreSQL版 -最佳实践 |优化 SQL 语句的更多相关文章
- 腾讯云TDSQL MySQL版 - 开发指南 二级分区
TDSQL MySQL版 目前支持 Range 和 List 两种格式的二级分区,具体建表语法和 MySQL 分区语法类似. 二级分区语法 一级 Hash,二级 List 分区示例如下: MySQL ...
- 腾讯云TDSQL MySQL版 - 开发指南 分布式事务
由于事务操作的数据通常跨多个物理节点,在分布式数据库中,类似方案即称为分布式事务. TDSQL MySQL版 支持普通分布式事务协议和 XA 分布式事务协议.TDSQL MySQL版(内核5.7或以上 ...
- 286万QPS!腾讯云TDSQL打造数据库领域的“超音速战机”
Bloodhound SSC超音速汽车将陆地极限速度提升到1678公里/小时,号称陆地“超音速战斗机”.无独有偶,同样也在2017年,在英特尔®.腾讯金融云团队的共同见证下,腾讯云数据库TDSQL采用 ...
- 腾讯云TDSQL审计原理揭秘
版权声明:本文由孙勇福原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/244 来源:腾云阁 https://www.qclo ...
- MaxCompute 构建企业云数据仓库CDW的最佳实践建议
在本文中阿里云资深产品专家云郎分享了基于阿里云 MaxCompute 构建企业云数据仓库CDW的最佳实践建议. 本文内容根据演讲视频以及PPT整理而成. 大家下午好,我是云郎,之前在甲骨文做企业架构师 ...
- 强强联袂!腾讯云TDSQL与国双战略签约,锚定国产数据库巨大市场
日前,腾讯云计算(北京)有限责任公司与北京国双科技有限公司签署了<国产数据库产品战略合作协议>,双方将在数据库技术方面展开深度合作,通过分布式交易型数据库的联合研发.产品服务体系建设.品牌 ...
- 腾讯云TDSQL监控库密码忘记问题解决实战
首先,给大家介绍一下TDSQL.TDSQL MySQL 版(TDSQL for MySQL)是腾讯打造的一款分布式数据库产品,具备强一致高可用.全球部署架构.分布式水平扩展.高性能.企业级安全等特性, ...
- 腾讯云CDB的AI技术实践:CDBTune
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:邢家树,高级工程师,目前就职于腾讯TEG基础架构部数据库团队.腾讯数据库技术团队维护MySQL内核分支TXSQL,100%兼容原生My ...
- 揭秘华为云GaussDB(for Influx)最佳实践:hint查询
摘要:GaussDB(for Influx)通过提供hint功能,在单时间线的查询场景下,性能有大幅度的提升,能有效满足客户某些特定场景的查询需求. 本文分享自华为云社区<华为云GaussDB( ...
随机推荐
- 什么是CAP?
1. 什么是CAP 是一种定理,多用于描述分布式架构,CAP这三个字母对应三种理念,且这三种理念只能两两组合,不能CAP三种理念同时共存(为什么?下面说). C:Consisteny(一致性) A:A ...
- 35、mysql数据库(ddl)
35.1.数据库之库操作: 1.创建数据库(在磁盘上创建一个对应的文件夹): create database [if not exists] db_name [character set xxx]; ...
- centos 8 gitlab 重置管理员的密码
登录gitlab安装服务器 由于 root 账户用的很少,所以我们容易忘记它的密码,但不代表它不重要,类似 linux 的 root 账户:一旦我们忘记了 root 账号的密码,我们需要知道重置的方法 ...
- AcWing 829. 模拟队列
实现一个队列,队列初始为空,支持四种操作: (1) "push x" – 向队尾插入一个数x: (2) "pop" – 从队头弹出一个数: (3) " ...
- 大话Java代理模式
一.什么是代理 首先理解一下什么是代理.简单来说,代理就你要做一件事情,我替你把事情做了.这是现实生活中我们遇到的代理的需求场景.但写代码的时候对代理场景的需求,跟现实场景有点区别,本质上还是帮你做事 ...
- 其他:IntelliJ IDEA设置运行内存
1. 打开idea的安装路径,进去bin目录 2. 修改idea.exe.vmoptions 将idea内存设置为-Xms512m -Xmx2048m -XX:ReservedCodeCacheS ...
- vim下出现^M怎么解决
将window下的文本文件上传到linux上,在读取数据文件时,在每一行数据后会出现^M字符. 为什么会出现这种情况呢: 因为windows.linux.os系统的换行符标准不同: 先了解下概念, ...
- 刷算法,这些api不可不知!
大家好,我是老三,最近在刷算法,发现有些api记得不熟,所以整理了一波,如果你也在刷题,赶紧收藏吧! 集合 在刷题中,各种数据结构是我们常常用到的,例如栈实现迭代.哈希存储键值对等等,我们来看看常用集 ...
- 为LInux系统安装坚果云网盘
首先 从www.jianguoyun.com/s/downloads/linux 中下载安装包(deb.rpm) deb 包安装及解决依赖方法 1. 使用 gdebi 安装,自动安装依赖 sudo g ...
- c语言:getch() getchar()
1.getchar();从键盘读取一个字符并输出,该函数的返回值是输入第一个字符的ASCII码:若用户输入的是一连串字符,函数直到用户输入回车时结束,输入的字符连同回车一起存入键盘缓冲区.若程序中有后 ...