前言

关于clusterProfiler这个R包就不介绍了,网红教授宣传得很成功,功能也比较强大,主要是做GO和KEGG的功能富集及其可视化。简单总结下用法,以后用时可直接找来用。

首先考虑一个问题:clusterProfiler做GO和KEGG富集分析的注释信息来自哪里?

GO的注释信息来自Bioconductor,提供了19个物种的org类型的GO注释信息,如下表所示。Bioconductor中更多的注释包可参考http://www.bioconductor.org/packages/release/data/annotation/,很乱,大多数我都不知道干啥用的。

packages organism
org.Ag.eg.db Anopheles
org.At.tair.db Arabidopsis
org.Bt.eg.db Bovine
org.Ce.eg.db Worm
org.Cf.eg.db Canine
org.Dm.eg.db Fly
org.Dr.eg.db Zebrafish
org.EcK12.eg.db E coli strain K12
org.EcSakai.eg.db E coli strain Sakai
org.Gg.eg.db Chicken
org.Hs.eg.db Human
org.Mm.eg.db Mouse
org.Mmu.eg.db Rhesus
org.Pf.plasmo.db Malaria
org.Pt.eg.db Chimp
org.Rn.eg.db Rat
org.Sc.sgd.db Yeast
org.Ss.eg.db Pig
org.Xl.eg.db Xenopus

KEGG的注释信息clusterProfiler通过KEGG 数据库的API来获取,https://www.kegg.jp/kegg/rest/keggapi.html

首先是一个物种所有基因对应的pathway注释文件,比如人的:http://rest.kegg.jp/link/hsa/pathway

其次还需要pathway对应的描述信息,比如人的:

http://rest.kegg.jp/list/pathway/hsa

关于KEGG数据库全部的物种及其简写(三个字母)如下列表:

https://www.genome.jp/kegg/catalog/org_list.html

因此对于以上已有pathway注释的物种,只需要将物种简写输入给clusterProfiler, 它会通过联网自动获取该物种的pathway注释信息。

以上都是有物种信息的情况,那么对于无物种信息的项目怎么办?

GO可以通过读取外部的GO注释文件进行分析。关于基因的GO注释,interproscan、eggnog-mapper和blas2go等软件都可以做,不过输出格式有些不同。clusterProfiler需要导入的GO注释文件的格式如下:

GeneID GO GO_Description
1 GO:0005819 spindle
2 GO:0072686 mitotic spindle
3 GO:0000776 kinetochore
需要包含以上三列信息,这3列信息任意顺序都可。

clusterProfiler包只针对含有OrgDb对象,如果是公共数据库中有该物种注释信息,只是未制作成org.db数据库(标准注释库),则可以不需要从头注释,只需手动制作org.db数据库类型,完成后直接使用即可,代码如下:

source("https://bioconductor.org/biocLite.R")
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager") BiocManager::install("AnnotationHub") # 一个包含大量注释信息的数据库,里面有很多物种及来源于很多数据库的注释信息。
BiocManager::install("biomaRt") library(AnnotationHub)
library(biomaRt) hub <- AnnotationHub() #建立AnnotationHub对象(视人品,网不行加载不了)
# unique(hub$species) #查看AnonotationHub里面物种
hub$species[which(hub$species=="Solanum")] #看AnonotationHub里是否包含想要的物种
# Solanum是番茄的拉丁名
query(hub, "Solanum") #查看该物种信息
hub[hub$species=="Solanum" & hub$rdataclass == "OrgDb"] #OrgDb属于rdataclass中,因此查看下该物种有没有OrgDb
Solanum.OrgDb <- hub[["AH59087"]]#AH59087是番茄对应的编号
#制作为标准注释库,就可和模式生物一样使用了

同样地,对于pathway数据库中没有的物种,也支持读取基因的pathway注释文件,然后进行分析,注释文件的格式如下:

GeneID Pathway Path_Description
1 ko:00001 spindle
2 ko:00002 mitotic spindle
3 ko:00003 kinetochore
以上三列信息的顺序也是任意的。

富集分析

通常用的富集分析有ORA、FCS和拓扑三种方法。ORA简单来说就是超几何检验或Fisher精确检验,大同小异,都符合超几何检验,这也是目前用的最多的方法,优劣不谈。FCS的代表就是GSEA,即基因集富集分析,优劣亦不谈。clusterProfiler提供了这两种富集分析方法。

1. ORA(Over-Representation Analysis)

GO富集参考代码:

#标准富集分析
ego <- enrichGO(
gene = gene$entrzID,
keyType = "ENTREZID",
universe = names(geneList), #背景基因集,可省
OrgDb = org.Hs.eg.db,
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE) #通过导入外部注释文件富集分析
data <- read.table("go_annotation.txt",header = T,sep = "\t")
go2gene <- data[, c(2, 1)]
go2name <- data[, c(2, 3)]
x <- enricher(gene,TERM2GENE = go2gene,TERM2NAME = go2name)

gene差异基因对应的向量;

keyType指定基因ID的类型,默认为ENTREZID, 可参考keytypes(org.Hs.eg.db)类型 ;

OrgDb指定该物种对应的org包的名字;

ont代表GO的3大类别,BP, CC, MF,也可是全部ALL;

pAdjustMethod指定多重假设检验矫正的方法,有“ holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”中的一种;

cufoff指定对应的阈值;

readable=TRUE代表将基因ID转换为gene symbol。

KEGG Pathway富集参考代码:

#标准富集分析
ego <- enrichKEGG(
gene = gene,
keyType = "kegg",
organism = 'hsa',
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
qvalueCutoff = 0.05
) #通过外部导入注释文件富集
data <- read.table("pathway_annotation.txt",header = T,sep = "\t")
go2gene <- data[, c(2, 1)]
go2name <- data[, c(2, 3)]
x <- enricher(gene,TERM2GENE = go2gene,TERM2NAME = go2name)

默认基因ID为kegg gene id,也可以是ncbi-geneid, ncbi-proteinid, uniprot等。

organism物种对应的三字母缩写,其他参数同GO富集。ID转换函数:

library(clusterProfiler)
bitr_kegg("1",fromType = "kegg",toType = 'ncbi-proteinid',organism='hsa') library(org.Hs.eg.db)
keytypes(org.Hs.eg.db) #支持的ID类型
bitr(gene, fromType = "ENTREZID", toType = c("ENSEMBL", "SYMBOL"), OrgDb = org.Hs.eg.db) #以上看出ID转换输入时,可以向量的形式,也可以单列基因名list导入,也可以是内置数据
gene <- c("AASDH","ABCB11","ADAM12","ADAMTS16","ADAMTS18")
gene <- data$V1 #字符串 data(geneList, package="DOSE") #富集分析的背景基因集
gene <- names(geneList)[abs(geneList) > 2]

2. GSEA(Gene Set Enrichment Analysis)

GO富集参考代码:

#标准富集分析
ego <- gseGO(
geneList = geneList,
OrgDb = org.Hs.eg.db,
ont = "CC",
nPerm = 1000, #置换检验的置换次数
minGSSize = 100,
maxGSSize = 500,
pvalueCutoff = 0.05,
verbose = FALSE) #通过导入外部注释文件富集分析参考代码:
data <- read.table("go_annotation.txt",header = T,sep = "\t")
go2gene <- data[, c(2, 1)]
go2name <- data[, c(2, 3)]
x <- GSEA(gene,TERM2GENE = go2gene,TERM2NAME = go2name)

KEGG Pathway富集参考代码:

#标准富集分析
kk <- gseKEGG(
geneList = gene,
keyType = 'kegg',
organism = 'hsa',
nPerm = 1000,
minGSSize = 10,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH"
) #通过外部导入注释文件富集
data <- read.table("pathway_annotation.txt",header = T,sep = "\t")
go2gene <- data[, c(2, 1)]
go2name <- data[, c(2, 3)]
x <- GSEA(gene,TERM2GENE = go2gene,TERM2NAME = go2name)

可视化

1.GO富集分析结果可视化

#barplot
barplot(ego, showCategory = 10) #默认展示显著富集的top10个,即p.adjust最小的10个 #dotplot
dotplot(ego, showCategory = 10) #DAG有向无环图
plotGOgraph(ego) #矩形代表富集到的top10个GO terms, 颜色从黄色过滤到红色,对应p值从大到小。 #igraph布局的DAG
goplot(ego) #GO terms关系网络图(通过差异基因关联)
emapplot(ego, showCategory = 30) #GO term与差异基因关系网络图
cnetplot(ego, showCategory = 5)

2.Pathway富集分析结果可视化

#barplot
barplot(kk, showCategory = 10) #dotplot
dotplot(kk, showCategory = 10) #pathway关系网络图(通过差异基因关联)
emapplot(kk, showCategory = 30) #pathway与差异基因关系网络图
cnetplot(kk, showCategory = 5) #pathway映射
browseKEGG(kk, "hsa04934") #在pathway通路图上标记富集到的基因,会链接到KEGG官网

Ref:

https://blog.csdn.net/weixin_43569478/article/details/83744242

https://blog.csdn.net/weixin_43569478/article/details/83744384

https://www.jianshu.com/p/065d38c28e2d

https://www.jianshu.com/p/47b5ea646932

https://www.cnblogs.com/yatouhetademao/p/8018252.html

https://zhuanlan.zhihu.com/p/35510434

【R】clusterProfiler的GO/KEGG富集分析用法小结的更多相关文章

  1. kegg富集分析之:KEGGREST包(9大功能)

    这个包依赖极有可能是这个:https://www.kegg.jp/kegg/docs/keggapi.html ,如果可以看懂会很好理解 由于KEGG数据库分享数据的策略改变,因此KEGG.db包不在 ...

  2. KEGG富集分析散点图.md

    输入数据格式 pathway = read.table("kegg.result",header=T,sep="\t") pp = ggplot(pathway ...

  3. R: 修改镜像、bioconductor安装及go基因富集分析

    1.安装bioconductor及go分析涉及的相关包 source("http://bioconductor.org/biocLite.R") options(BioC_mirr ...

  4. DAVID 进行 GO/KEGG 功能富集分析

    何为功能富集分析? 功能富集分析是将基因或者蛋白列表分成多个部分,即将一堆基因进行分类,而这里的分类标准往往是按照基因的功能来限定的.换句话说,就是把一个基因列表中,具有相似功能的基因放到一起,并和生 ...

  5. 富集分析DAVID、Metascape、Enrichr、ClueGO

    前言 一般我们挑出一堆感兴趣的基因想临时看看它们的功能,需要做个富集分析.虽然公司买了最新版的数据库,如KEGG,但在集群跑下来嫌麻烦.这时网页在线或者本地化工具派上用场了. DAVID DAVID地 ...

  6. GO富集分析示例【华为云技术分享】

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/devcloud/article/detai ...

  7. python scipy包进行GO富集分析p值计算

    最近总是有需要单独对某一个类型的通路进行超几何分布的p值计算,这里记录一下python包的计算方法 使用scipy的stat里面的hypergeom.sf方法进行富集分析的p值计算 hsaxxxxx ...

  8. 利用GSEA对基因表达数据做富集分析

      image Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a p ...

  9. SNPsnap | 筛选最佳匹配的SNP | 富集分析 | CP loci

    一个矛盾: GWAS得到的SNP做富集分析的话,通常都会有强的偏向性. co-localization of GWAS signals to gene-dense and high linkage d ...

随机推荐

  1. [技术博客] 敏捷软工——JavaScript踩坑记

    [技术博客] 敏捷软工--JavaScript踩坑记 一.一个令人影响深刻的坑 1.脚本语言的面向对象 面向对象特性是现代编程语言的基本特性,JavaScript中当然集成了面向对象特性.但是Java ...

  2. Noip模拟83 2021.10.26

    T1 树上的数 有手就能在衡中$OJ$上过,但是$WaitingCoders$不行,就是这样 必须使用$O(n)$算法加上大力卡常,思路就是找子树内没更新的更新,更新过了直接$return$ 1 #i ...

  3. 预备知识-python核心用法常用数据分析库(上)

    1.预备知识-python核心用法常用数据分析库(上) 目录 1.预备知识-python核心用法常用数据分析库(上) 概述 实验环境 任务一:环境安装与配置 [实验目标] [实验步骤] 任务二:Pan ...

  4. (继承)Program2.1

    覆盖和重写的意思是一样?结果是一样的 例如: 1 class Parent: # 定义父类 2 def myMethod(self): 3 print('调用父类方法') 4 5 6 class Ch ...

  5. Codeforces Round #742 (Div. 2)题解

    链接 \(A,B\)题签到,就完了. \(C\)题,考虑进位时多进一位,由于是隔一位进的,所以可以发现奇数位和偶数位是相互独立的,那么我们就把奇数位和偶数位单独拉出来组成数字例如:34789,我们单独 ...

  6. hdu 1861 游船出租(模拟题,,水)

    题意: 现有公园游船租赁处请你编写一个租船管理系统. 当游客租船时,管理员输入船号并按下S键,系统开始计时:当游客还船时,管理员输入船号并按下E键,系统结束计时. 船号为不超过100的正整数.当管理员 ...

  7. linux 内核源代码情景分析——i386 的页式内存管理机制

    可以看出,在页面目录中共有210 = 1024个目录项,每个目录项指向一个页面表,而在每个页面表中又共有1024个页面描述项. 由图看出来,从线性地址到物理地址的映射过程为: 1)从CR3取得页面目录 ...

  8. Django 前端BootCSS 实现分页

    通过使用bootstrap框架,并配合Django自带的Paginator分页组件即可实现简单的分页效果. 1.创建MyWeb项目 python manage.py startapp MyWeb 2. ...

  9. Nessus home版插件更新

    1,进入服务器停止服务 service nessusd stop 2,进入目录执行命令获取Challenge code cd /opt/nessus/sbin/ ./nessuscli fetch - ...

  10. Get value from agent failed: cannot connect to [[127.0.0.1]:10050]: [111] Connection refused

    zabbix 监控连接失败 1.查看配置文件端口,server端口10051开启正常,agent端10050开启正常 2.查看/var/log/zabbix/zabbix_server.log./va ...