Codeforces 题目传送门 & 洛谷题目传送门

事实上是一道非常容易的题

很容易想到如果 \(c_i\geq a_j\) 且 \(d_i\geq b_j\) 就连一条 \(i\to j\) 的边表示用完 \(i\) 之后可以用 \(j\)。然后跑 BFS。

直接跑复杂度是 \(n^2\),不过发现一个性质,那就是每个点最多被访问一次,故考虑用数据结构优化 BFS 的过程,具体来说,用树状数组套 set 维护所有 \((a_i,b_i)\) 的坐标,当访问到某个 \(j\) 时候就直接在树状数组套 set 上找出全部满足 \(a_i\leq c_j,b_i\leq d_j\) 的 \(i\) 并将其压入队列,并直接将这些点从 set 中删除。注意到每个点会恰好被删除一次,故总删除次数是线性的,再加上树状数组套 set 本身的 2log,复杂度 \(n\log^2n\)。

记得之前做过一道什么数据结构优化二分图染色的题来着的?这题思想似乎与那题差不多,都是利用每个点最多被访问一次这个性质,用数据结构优化暴力的过程(不过似乎这题比那题还容易一些)。

上帝不要惩罚我刷水题/kk

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
int n,a[MAXN+5],b[MAXN+5],c[MAXN+5],d[MAXN+5];
int key[MAXN*2+5],cnt=0,uni[MAXN*2+5],num=0;
set<pii> st[MAXN*2+5];
void insert(int x,int y,int z){
for(int i=x;i<=num;i+=(i&(-i))) st[i].insert(mp(y,z));
}
void del(int x,int y,int z){
for(int i=x;i<=num;i+=(i&(-i))) st[i].erase(st[i].find(mp(y,z)));
}
vector<int> query(int x,int y){
vector<int> ret;
for(int i=x;i;i&=(i-1)){
set<pii>::iterator t=st[i].lower_bound(mp(y+1,0));
for(set<pii>::iterator it=st[i].begin();it!=t;++it){
ret.pb(it->se);
}
} return ret;
}
int dis[MAXN+5],from[MAXN+5];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
key[++cnt]=a[i];key[++cnt]=c[i];
} key[++cnt]=0;sort(key+1,key+cnt+1);key[0]=-1;
for(int i=1;i<=cnt;i++) if(key[i]!=key[i-1]) uni[++num]=key[i];
for(int i=1;i<=n;i++){
a[i]=lower_bound(uni+1,uni+num+1,a[i])-uni;
c[i]=lower_bound(uni+1,uni+num+1,c[i])-uni;
}
for(int i=1;i<=n;i++) insert(a[i],b[i],i);
memset(dis,-1,sizeof(dis));queue<int> q;
vector<int> v=query(1,0);
for(int i=0;i<v.size();i++) dis[v[i]]=1,q.push(v[i]),del(a[v[i]],b[v[i]],v[i]);
while(!q.empty()){
int x=q.front();q.pop();v=query(c[x],d[x]);
for(int i=0;i<v.size();i++){
int t=v[i];dis[t]=dis[x]+1;from[t]=x;q.push(t),del(a[t],b[t],t);
}
}
if(dis[n]==-1) printf("-1\n");
else{
printf("%d\n",dis[n]);vector<int> v;
for(int i=n;i;i=from[i]) v.pb(i);
reverse(v.begin(),v.end());
for(int i=0;i<v.size();i++) printf("%d ",v[i]);
}
return 0;
}

Codeforces 605D - Board Game(树状数组套 set)的更多相关文章

  1. Codeforces 1139F Dish Shopping 树状数组套平衡树 || 平衡树

    Dish Shopping 将每个物品拆成p 和 s 再加上人排序. 然后问题就变成了, 对于一个线段(L - R), 问有多少个(li, ri)满足  L >= li && R ...

  2. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

  3. BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树

    [题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...

  4. 【树状数组套权值线段树】bzoj1901 Zju2112 Dynamic Rankings

    谁再管这玩意叫树状数组套主席树我跟谁急 明明就是树状数组的每个结点维护一棵动态开结点的权值线段树而已 好吧,其实只有一个指针,指向该结点的权值线段树的当前结点 每次查询之前,要让指针指向根结点 不同结 ...

  5. BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树

    [题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...

  6. 【BZOJ-1452】Count 树状数组 套 树状数组

    1452: [JSOI2009]Count Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1769  Solved: 1059[Submit][Stat ...

  7. 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...

  8. BZOJ1901 - Dynamic Rankings(树状数组套主席树)

    题目大意 给定一个有N个数字的序列,然后又m个指令,指令种类只有两种,形式如下: Q l r k 要求你查询区间[l,r]第k小的数是哪个 C i t  要求你把第i个数修改为t 题解 动态的区间第k ...

  9. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

随机推荐

  1. 【UE4】GAMES101 图形学作业0:矩阵初识

    作业描述 给定一个点P=(2,1), 将该点绕原点先逆时针旋转45◦,再平移(1,2), 计算出变换后点的坐标(要求用齐次坐标进行计算). UE4 知识点 主要矩阵 FMatrix FBasisVec ...

  2. Netty学习笔记(1)NIO三大组件

    1. Channel channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前 ...

  3. Intellij IDEA 2021.2.3 最新版免费激活教程(可激活至 2099 年,亲测有效)

    ​ 申明,本教程 Intellij IDEA 最新版破解.激活码均收集与网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除.如条件允许,建议大家购买正版. 本教程更新于:2021 年 10 月 ...

  4. freemarker自定义指令

    最近项目中使用了spring boot搭建项目,使用spring security管理项目中的权限,使用freemarker作为视图层.为了将权限控制到按钮上,因此考虑直接使用spring secur ...

  5. Noip模拟68 2021.10.4

    T1 玩水 成功在考试的时候注释掉正解,换成了暴力,只因为不敢保证正解思路的正确 脑子瓦特了,不知道把暴力打成函数拼在一起,不知道当时咋想的.... 就是你找有没有一个点上面和左面的字符一样, 如果这 ...

  6. qgis cookbook-QgsMapRendererJob学习

    学习到渲染(QgsMapRendererJob),按照教程所讲总是输出不了图像,看了一下qgis的测试源码,发现少了一句话,加上后就可以输出了! from qgis.core import * fro ...

  7. 五分钟搞懂spring-cloud-square

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 初识spring-cloud-square 2021年 ...

  8. python 模块 hashlib(提供多个不同的加密算法)

    hashlib是涉及安全散列和消息摘要,提供多个不同的加密算法借口,如SHA1.SHA224.SHA256.SHA384.SHA512.MD5等. import hashlib m = hashlib ...

  9. OpenEuler树莓派基础实验

    OpenEuler树莓派基础实验 1.任务详情 1. 参考https://www.cnblogs.com/rocedu/p/14615565.html 完成OpenEuler的安装,提交过程博客和截图 ...

  10. 检查redis是否正常运行

    [XX@XXX]$ ps -ef | grep redisXX   8047 1 0 10:06 ? 00:00:03 redis-server *:6379XX   9983 9802 0 11:2 ...