NOIP 模拟 $24\; \rm block$
题解 \(by\;zj\varphi\)
因为它要求大于它的且放在它前的数的个数要小于它的 \(key\) 值,所以先按 \(\rm val\) 值排序,然后按 \(\rm key\) 值排序,按顺序插入。
这样保证当前队列中已有的 \(\rm val\) 值一定大于当前加入的,所以直接计算方案就行。
就是它的 \(\rm val\) 和当前队列中的数的个数取 \(\min\),记得处理连续一段相同的情况
对于第二问,通过线段树实现
对于线段树,维护当前字典序最小的点,每次选出一个时删除当前点,并更新 \(val\) 值小于等于它的 \(\rm key-1\),当有 \(\rm key\) 值为零的时,直接输出。
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++;
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();};
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=5e5+7,MOD=1e9+7,INF=1061109567;
int K[N],V[N],p[N],pre[N],n;
ll ans=1;
inline int cmp(int x,int y) {return V[x]==V[y]?K[x]<K[y]:V[x]>V[y];}
struct Seg{
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
struct segmenttree{int x,k,v,nk,nx,lz;}T[N<<2];
inline void up(int x) {
int l=ls(x),r=rs(x);
T[x].nk=cmin(T[l].nk,T[r].nk);
if (T[x].nk!=INF) {
if (T[l].nk<T[r].nk) T[x].nx=T[l].nx;
else if (T[l].nk>T[r].nk) T[x].nx=T[r].nx;
else {
if (V[p[T[l].nx]]<V[p[T[r].nx]]) T[x].nx=T[l].nx;
else if (V[p[T[l].nx]]>V[p[T[r].nx]]) T[x].nx=T[r].nx;
else {
if (K[p[T[l].nx]]<=K[p[T[r].nx]]) T[x].nx=T[l].nx;
else if (K[p[T[l].nx]]>K[p[T[r].nx]]) T[x].nx=T[r].nx;
}
}
}
if (T[l].k<T[r].k) T[x].x=T[l].x,T[x].k=T[l].k,T[x].v=T[l].v;
else if (T[l].k>T[r].k) T[x].x=T[r].x,T[x].k=T[r].k,T[x].v=T[r].v;
else {
if (T[l].v<=T[r].v) T[x].x=T[l].x,T[x].k=T[l].k,T[x].v=T[l].v;
else if (T[l].v>T[r].v) T[x].x=T[r].x,T[x].k=T[r].k,T[x].v=T[r].v;
}
}
inline void down(int x) {
if (!T[x].lz) return;
T[ls(x)].nk-=T[x].lz;
T[rs(x)].nk-=T[x].lz;
T[ls(x)].lz+=T[x].lz;
T[rs(x)].lz+=T[x].lz;
T[x].lz=0;
}
void build(int x,int l,int r) {
if (l==r) {
T[x].nx=T[x].x=l,T[x].v=V[p[l]],T[x].k=T[x].nk=K[p[l]];
return;
}
int mid(l+r>>1);
build(ls(x),l,mid);
build(rs(x),mid+1,r);
up(x);
}
void updates(int x,int p,int l,int r) {
if (l==r) return (void)(T[x].nk=INF,T[x].k=T[x].v=INF);
int mid(l+r>>1);
down(x);
if (p<=mid) updates(ls(x),p,l,mid);
else if (p>mid) updates(rs(x),p,mid+1,r);
up(x);
}
void update(int x,int l,int r,int lt,int rt) {
if (l<=lt&&rt<=r) return (void)(--T[x].nk,p(T[x].lz));
int mid(lt+rt>>1);
down(x);
if (l<=mid) update(ls(x),l,r,lt,mid);
if (r>mid) update(rs(x),l,r,mid+1,rt);
up(x);
}
}T;
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(n);
for (ri i(1);i<=n;p(i)) read(K[i]),read(V[i]),p[i]=i;
sort(p+1,p+n+1,cmp);
int lst=-1,nm=0;
for (ri i(1);i<=n;p(i)) {
int cur=p[i];
if (V[cur]==lst) ans*=cmin(i-1-nm,K[cur]-1)+nm+1,p(nm);
else ans*=cmin(i-1,K[cur]-1)+1,nm=1;
lst=V[cur];
ans%=MOD;
}
lst=n;
for (ri i(n);i;--i) {
int cur=p[i];
if (V[p[lst]]==V[cur]) pre[i]=lst;
else pre[i]=lst=i;
}
printf("%lld\n",ans);
T.build(1,1,n);
for (ri i(1);i<=n;p(i)) {
int px;
if (T.T[1].nk>1) printf("%d %d\n",T.T[1].k,T.T[1].v),px=T.T[1].x;
else printf("%d %d\n",K[p[T.T[1].nx]],V[p[T.T[1].nx]]),px=T.T[1].nx;
T.updates(1,px,1,n);
if (pre[px]<n) T.update(1,pre[px]+1,n,1,n);
}
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $24\; \rm block$的更多相关文章
- NOIP 模拟 $24\; \rm matrix$
题解 \(by\;zj\varphi\) 发现 \(\rm n,m\) 都很小,考虑分行状压. 但是上一行和下一行的按钮状态会对当前行造成影响,所以再枚举一个上一行的按钮状态. 因为对于两行,只有如下 ...
- NOIP 模拟 $24\; \rm graph$
题解 \(by\;zj\varphi\) 首先一个点能否选择的条件是 \(dis_{1,x}+dis_{x,n}=dis_{1,n}\) 正解是计算一条道路上的所有为 \(-1\) 边的选择范围,是个 ...
- 2021.5.24考试总结 [NOIP模拟3]
带着爆0的心态考的试,没想到整了个假rk2 (炸鱼大佬wtz忒强了OTZ T1 景区路线规划 这题对刚学完概率期望的我来说简直水爆了好吗.. 因为存在时间限制,不好跑高斯消元,就直接跑dp就完了. 令 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 2
大概就是考试的时候慌的一批,因为一道正解也没想出来,T1,T3只会暴搜,听见天皇在旁边的窃喜声本渣内心是崩溃的 会打暴搜的我先打了暴搜,大多数时间都用在第二题上,妄想自己能拿50多分- 最后半小时万念 ...
- 20190725 NOIP模拟8
今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...
随机推荐
- 递推算法,AI衍生
引言 最近在刷leetcode算法题的时候,51题很有意思: 题目是这样的: n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击.给你一个整数 n ,返回 ...
- Springboot中Rest风格请求映射如何开启并使用
问题引入 因为前端页面只能请求两种方式:GET请求和POST请求,所以就需要后台对其进行处理 解决办法:通过springmvc中提供的HiddenHttpMethodFilter过滤器来实现 而由于我 ...
- java集合(1)-概述
Java集合类是一种特别有用的工具类,可用于存储数量不等的对象,并可以实现常用的数据结构,如栈,队列等,此外Java集合还可以用于保存具有映射关系的关联数组.java集合大致可分为Set,List,Q ...
- clickhouse分布式集群
一.环境准备: 主机 系统 应用 ip ckh-01 centos 8 jdk,zookeeper,clickhouse 192.168.205.190 ckh-02 centos 8 jdk,zoo ...
- Spring Boot邮箱链接注册验证
Spring Boot邮箱链接注册验证 简单介绍 注册流程 [1]前端提交注册信息 [2]后端接受数据 [3]后端生成一个UUID做为token,将token作为redis的key值,用户数据作为re ...
- 基于SSM酒店管理系统mysql版本(前后台)
介绍:spring,springmvc,mybatis,mysql,eclipse 截图: 数据库表:CREATE TABLE `account` ( `id` int(11) NOT NULL AU ...
- awk对某个字段分割处理
工作中遇到要根据文件中某个字段分割成多行文本的处理,想到用awk处理,这里记录下: 问题: 原文件:假设一共2个字段,用"|"分割,其中第二个字段用"#"分割, ...
- 简单快速安装Apache+PHP+MySql服务环境(四)—— 将php版本升级到7.2
书接上文,简单快速安装Apache+PHP+MySql服务环境(二)-- centos使用yum安装指定版本的php. 随着各种PHP框架的升级,对PHP的版本也有了更高的要求,所以笔者也尝试着更新升 ...
- Python基础之用PyQt5界面代码分离以及自定义一个槽函数
最近开发一个项目,需要用到界面,遇到界面不能实时更新的问题,看到网上很多用槽函数,但是大多都是些button的,并不是我需要的,要么就是整数的,后来自己进行尝试,写了一个自定义的槽函数处理treewi ...
- Linux 查看内存命令
Linux 查看内存命令 top命令, Linux的top命令提供Linux资源使用情况的实时更新信息.不仅可以查看Linux内存,也可以查看CPU以及各个进程之间的对资源的占用情况.使用方式如下: ...