本文源码基于flink1.14

平台用户在使用我们的flinkSql时经常会开启minaBatch来优化状态读写

所以从源码的角度具体解读一下miniBatch的原理

先看一下flinksql是如何触发miniBatch的优化的

主要就是这个Calcite的rule了,来具体看一下

在对应的match方法中

会根据miniBatch的类型判断,是否需要添加一个Assigner的节点

这个assigner是干嘛的呢?这个Assinger是一个execNode和窗口的assigner是不一样的,这里主要是为了发送水印的

没错,miniBatch攒一批的实现原理就是通过水印,来作为一批的标识

来具体看看

分为处理时间和事件时间

先看看处理时间

逻辑比较简单,就是当前微批的开始时间大于当前水印,就发送一个当前的微批的开始时间的水印

然后,事件时间的没什么意思,就是水印直接往下游转发了

接着,攒微批已经将完了,来看下具体聚合算子怎么优化微批计算的吧

来看个StreamExecGroupAggregate这个聚合ExecNode的逻辑

既然是execNode来直接看它的translateToPlanInternal()方法

原来是直接在execNode里面做了特殊处理,不过也是,每个算子的优化都不一样也不太好抽象出来

这里还是 先看看不使用微批的时候是怎么处理的,然后来对比一下

没用微批这里是封装成了一个KeyedProcessOperator的算子,里面传的aggFunction直接就是一个KeyedProcessFunction

看下具体处理groupAggFunction

这里没有开minibatch的逻辑比较简单

每来一条数据,先读状态accState是一个valueState然后,调用聚合函数的accumlate来计算,然后用新得到的累加器更新状态

可以看到这样做的问题还是比较大的

第一,每一条数据都要读写状态开销很大

第二,每条数据都要调用计算,有很多虚函数的调用

因此,让我们看看MIniBatch是如何做的吧

回到上面,我们看到MiniBatch是创建的一个KeyedMapBundleOperator,里面的参数是MiniBatchGroupAggFunction

看下KeyedMapBundleOperator

先从一个bundle获取和数据同key的数据,来看下这个bundle是什么

ok,就是一个本地map,然后走addInput()

来看下MiniBatchGroupAggFunction的addInput方法

其实就是把,来的数据加到map对应key的Value是一个list里面去了

最后来看当微批攒够触发onTrigger会走到finishBundle()方法

先从buffer获取每一个key对应的value是一个list

然后读取状态state数据

直接for循环遍历微批的数据

然后调用聚合函数的accumulate不停计算

最后将计算好的累加器accumulator存到状态里面去

是不是很简单

这样微批处理就完成了,减少了状态的频繁访问,是一个很不错的优化

Flink sql 之 微批处理与MiniBatchIntervalInferRule (源码分析)的更多相关文章

  1. Flink sql 之 join 与 StreamPhysicalJoinRule (源码解析)

    源码分析基于flink1.14 Join是flink中最常用的操作之一,但是如果滥用的话会有很多的性能问题,了解一下Flink源码的实现原理是非常有必要的 本文的join主要是指flink sql的R ...

  2. Flink 非对齐Unaligned的checkpoint(源码分析)

    本文源码基于flink1.14 在帮助用户排查任务的时候,经常会发现部分task处理的慢,在Exactly once语义时需要等待快照的对齐而白白柱塞的情况 在flink1.11版本引入了非对齐的ch ...

  3. Flink中watermark为什么选择最小一条(源码分析)

    昨天在社区群看到有人问,为什么水印取最小的一条?这里分享一下自己的理解 首先水印一般是设置为:(事件时间 - 指定的值)  这里的作用是解决迟到数据的问题,从源码来看一下它如何解决的 先来看下wind ...

  4. 从flink-example分析flink组件(1)WordCount batch实战及源码分析

    上一章<windows下flink示例程序的执行> 简单介绍了一下flink在windows下如何通过flink-webui运行已经打包完成的示例程序(jar),那么我们为什么要使用fli ...

  5. 【springcloud】1.微服务之springcloud-》eureka源码分析之请叫我灵魂画师。。。

  6. Flink sql 之 两阶段聚合与 TwoStageOptimizedAggregateRule(源码分析)

    本文源码基于flink1.14 上一篇文章分析了<flink的minibatch微批处理>的源码 乘热打铁分析一下两阶段聚合的源码,因为使用两阶段要先开启minibatch,至于为什么后面 ...

  7. 从flink-example分析flink组件(3)WordCount 流式实战及源码分析

    前面介绍了批量处理的WorkCount是如何执行的 <从flink-example分析flink组件(1)WordCount batch实战及源码分析> <从flink-exampl ...

  8. Flink中Idle停滞流机制(源码分析)

    前几天在社区群上,有人问了一个问题 既然上游最小水印会决定窗口触发,那如果我上游其中一条流突然没有了数据,我的窗口还会继续触发吗? 看到这个问题,我蒙了???? 对哈,因为我是选择上游所有流中水印最小 ...

  9. MyBatis 源码分析 - 插件机制

    1.简介 一般情况下,开源框架都会提供插件或其他形式的拓展点,供开发者自行拓展.这样的好处是显而易见的,一是增加了框架的灵活性.二是开发者可以结合实际需求,对框架进行拓展,使其能够更好的工作.以 My ...

随机推荐

  1. 安全相关,CSRF

    先说下CSRF的定义 跨站请求伪造(英语:Cross-site request forgery),也被称为 one-click attack 或者 session riding,通常缩写为 CSRF ...

  2. 【Reverse】每日必逆0x03

    BUU-刮开有奖 附件:https://files.buuoj.cn/files/abe6e2152471e1e1cbd9e5c0cae95d29/8f80610b-8701-4c7f-ad60-63 ...

  3. 【Linux】【Commands】文本查看类

    分屏查看命令:more和less more命令: more FILE 特点:翻屏至文件尾部后自动退出: less命令: less FILE head命令: 查看文件的前n行: head [option ...

  4. MFC入门示例之访问对话框控件的7种方法

    方法一: 1 //方法一 2 void CMFCApplication2Dlg::OnBnClickedButton1() 3 { 4 int num1, num2, num3; 5 TCHAR ch ...

  5. ANTLR 简介

    <ANTLR 4权威指南>由机械工业出版社出版,有兴趣的读者推荐购买阅读. 本专题大多内容来源于我读<ANTLR 4权威指南>的随手笔记以及个人实践,仅供参考学习,请勿用于任何 ...

  6. Charles 手机抓包

    Charles 手机抓包 请求抓包对于程序员调试代码必不可少,Charles是一个用与抓包的好工具(也可以使用Fiddler),Charles抓包是通过中间人代理实现,在客户端和服务端通信时,Char ...

  7. 『学了就忘』Linux服务管理 — 77、RPM包安装基于xinetd的服务的管理

    目录 1.基于xinetd服务的启动管理 (1)telnet服务安装 (2)telnet服务启动 2.基于xientd服务的自启动管理 现在Linux系统中基于xinetd的服务越来越少了,但Linu ...

  8. 3、Spring的DI依赖注入

    一.DI介绍 1.DI介绍 依赖注入,应用程序运行依赖的资源由Spring为其提供,资源进入应用程序的方式称为注入. Spring容器管理容器中Bean之间的依赖关系,Spring使用一种被称为&qu ...

  9. centos7部署mysql-5.7

    目录 一.环境声明 二.程序部署 三.更改初始密码 一.环境声明 [mysql-Server] 主机名 = host-1 系统 = centos-7.3 地址 = 1.1.1.1 软件 = mysql ...

  10. shell脚本 阿里云基线检查一键配置

    一.简介 源码地址 日期:2017/9/1 介绍:安全加固脚本,会符合阿里云基线检查.有幂等性,可重复执行 效果图: 二.使用 适用:centos6/7 语言:中文 注意:脚本是符合阿里云基线检查的配 ...