本文源码基于flink1.14

平台用户在使用我们的flinkSql时经常会开启minaBatch来优化状态读写

所以从源码的角度具体解读一下miniBatch的原理

先看一下flinksql是如何触发miniBatch的优化的

主要就是这个Calcite的rule了,来具体看一下

在对应的match方法中

会根据miniBatch的类型判断,是否需要添加一个Assigner的节点

这个assigner是干嘛的呢?这个Assinger是一个execNode和窗口的assigner是不一样的,这里主要是为了发送水印的

没错,miniBatch攒一批的实现原理就是通过水印,来作为一批的标识

来具体看看

分为处理时间和事件时间

先看看处理时间

逻辑比较简单,就是当前微批的开始时间大于当前水印,就发送一个当前的微批的开始时间的水印

然后,事件时间的没什么意思,就是水印直接往下游转发了

接着,攒微批已经将完了,来看下具体聚合算子怎么优化微批计算的吧

来看个StreamExecGroupAggregate这个聚合ExecNode的逻辑

既然是execNode来直接看它的translateToPlanInternal()方法

原来是直接在execNode里面做了特殊处理,不过也是,每个算子的优化都不一样也不太好抽象出来

这里还是 先看看不使用微批的时候是怎么处理的,然后来对比一下

没用微批这里是封装成了一个KeyedProcessOperator的算子,里面传的aggFunction直接就是一个KeyedProcessFunction

看下具体处理groupAggFunction

这里没有开minibatch的逻辑比较简单

每来一条数据,先读状态accState是一个valueState然后,调用聚合函数的accumlate来计算,然后用新得到的累加器更新状态

可以看到这样做的问题还是比较大的

第一,每一条数据都要读写状态开销很大

第二,每条数据都要调用计算,有很多虚函数的调用

因此,让我们看看MIniBatch是如何做的吧

回到上面,我们看到MiniBatch是创建的一个KeyedMapBundleOperator,里面的参数是MiniBatchGroupAggFunction

看下KeyedMapBundleOperator

先从一个bundle获取和数据同key的数据,来看下这个bundle是什么

ok,就是一个本地map,然后走addInput()

来看下MiniBatchGroupAggFunction的addInput方法

其实就是把,来的数据加到map对应key的Value是一个list里面去了

最后来看当微批攒够触发onTrigger会走到finishBundle()方法

先从buffer获取每一个key对应的value是一个list

然后读取状态state数据

直接for循环遍历微批的数据

然后调用聚合函数的accumulate不停计算

最后将计算好的累加器accumulator存到状态里面去

是不是很简单

这样微批处理就完成了,减少了状态的频繁访问,是一个很不错的优化

Flink sql 之 微批处理与MiniBatchIntervalInferRule (源码分析)的更多相关文章

  1. Flink sql 之 join 与 StreamPhysicalJoinRule (源码解析)

    源码分析基于flink1.14 Join是flink中最常用的操作之一,但是如果滥用的话会有很多的性能问题,了解一下Flink源码的实现原理是非常有必要的 本文的join主要是指flink sql的R ...

  2. Flink 非对齐Unaligned的checkpoint(源码分析)

    本文源码基于flink1.14 在帮助用户排查任务的时候,经常会发现部分task处理的慢,在Exactly once语义时需要等待快照的对齐而白白柱塞的情况 在flink1.11版本引入了非对齐的ch ...

  3. Flink中watermark为什么选择最小一条(源码分析)

    昨天在社区群看到有人问,为什么水印取最小的一条?这里分享一下自己的理解 首先水印一般是设置为:(事件时间 - 指定的值)  这里的作用是解决迟到数据的问题,从源码来看一下它如何解决的 先来看下wind ...

  4. 从flink-example分析flink组件(1)WordCount batch实战及源码分析

    上一章<windows下flink示例程序的执行> 简单介绍了一下flink在windows下如何通过flink-webui运行已经打包完成的示例程序(jar),那么我们为什么要使用fli ...

  5. 【springcloud】1.微服务之springcloud-》eureka源码分析之请叫我灵魂画师。。。

  6. Flink sql 之 两阶段聚合与 TwoStageOptimizedAggregateRule(源码分析)

    本文源码基于flink1.14 上一篇文章分析了<flink的minibatch微批处理>的源码 乘热打铁分析一下两阶段聚合的源码,因为使用两阶段要先开启minibatch,至于为什么后面 ...

  7. 从flink-example分析flink组件(3)WordCount 流式实战及源码分析

    前面介绍了批量处理的WorkCount是如何执行的 <从flink-example分析flink组件(1)WordCount batch实战及源码分析> <从flink-exampl ...

  8. Flink中Idle停滞流机制(源码分析)

    前几天在社区群上,有人问了一个问题 既然上游最小水印会决定窗口触发,那如果我上游其中一条流突然没有了数据,我的窗口还会继续触发吗? 看到这个问题,我蒙了???? 对哈,因为我是选择上游所有流中水印最小 ...

  9. MyBatis 源码分析 - 插件机制

    1.简介 一般情况下,开源框架都会提供插件或其他形式的拓展点,供开发者自行拓展.这样的好处是显而易见的,一是增加了框架的灵活性.二是开发者可以结合实际需求,对框架进行拓展,使其能够更好的工作.以 My ...

随机推荐

  1. ClassLoad类加载器与双亲委派模型

    1. 类加载器 Class类描述的是整个类的信息,在Class类中提供的方法getName()是根据ClassPath配置的路径来进行类加载的.若类加载的路径为文件.网络等时则必须进行类加载这是就需要 ...

  2. 颜色RGB值对照表

    转载自 http://www.91dota.com/?p=49# 常用颜色的RGB值及中英文名称   颜  色    RGB值 英文名 中文名   #FFB6C1 LightPink 浅粉红   #F ...

  3. ActiveMQ(一)——简介

    一.ActiveMQ简介 ActiveMQ是什么ActiveMQ是Apache推出的,一款开源的,完全支持JMS1.1和J2EE1.4规范的JMS Provider实现的消中间件(MOM) Activ ...

  4. 访问者模式(Visitor Pattern)——操作复杂对象结构

    模式概述 在软件开发中,可能会遇到操作复杂对象结构的场景,在该对象结构中存储了多个不同类型的对象信息,而且对同一对象结构中的元素的操作方式并不唯一,可能需要提供多种不同的处理方式,还有可能增加新的处理 ...

  5. Java中的选择结构(二)

    选择结构(二) 学习本章会用到的单词: case:实例,情形,情况 switch:转换,切换,开关 default:系统默认值,违约,预设.缺省 exit:出口,通道,退出 consume:消耗,耗费 ...

  6. ciscn_2019_s_9

    很简单的一道题 例行检查 没有开启nx保护,就想到了shellcode来做 很明显的栈溢出 唯一的要求就是shellcode长度不能超过0x24 通过jump跳转到shellcode的位置 完整exp ...

  7. 成本资源(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 张同学说,成本资源就是balabalabala--算了,反正就是一种资源,比如,张同学列出的差旅费.住宿费.交通费.通信费 ...

  8. 资源分配单位(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 那些分配了资源的任务,其中的资源是有数量单位的,默认工时单位是100%,材料单位是1. 比如某吃货,为了完成吃米饭这一任务 ...

  9. Docker从入门到精通(八)——Docker Compose

    恭喜大家,学到这里,对于 docker 的基础玩法大家应该都会了,下面会介绍 docker的一些编排工具. 1.为什么需要 Docker Compose? 官网镇楼:https://www.runoo ...

  10. maven 常用编译

    mvn -B clean package -Dspecific -DskipTests -P test