import numpy as np
import matplotlib.pyplot as plt

matplotlib.pyplot.legend

在开始教程之前,我们必须先了解matplotlib.pyplot.legend(),该函数可以用以添加图例。

方法1自动检测

通过这种方式,lendgend()会从artist中获取label属性,并自动生成图例,比如:

fig, ax = plt.subplots()
line, = ax.plot([1, 2, 3], label="Inline label")
ax.legend()
plt.show()

或者:

line.set_label("Inline label")
ax.legend()

方法2为现有的Artist添加

我们也可以通过下列操作,为已经存在的Artist添加图例,但是这种方式并不推荐,因为我们很容易混淆。

fig, ax = plt.subplots()
line, = ax.plot([1, 2, 3])
ax.legend(["A simple line"])

方3显示添加图例

我们也可以显示添加图例:

fig, ax = plt.subplots()
line1, = ax.plot([1, 2, 3])
line2, = ax.plot([3, 2, 1])
ax.legend((line1, line2), ("line1", "line2"))

参数:

handle: Artist

label: 标签

loc:位置,比如"best":0, "upper right" 1 ...

fontsize

...

控制图例的输入

直接使用legend()命令,matplotlib会自动检测并生成图例,这种方式等价于:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

需要注意的是,只有为Artist设置标签了,通过get_legend_handles_labels()才有效。

有些时候,我们只需要为部分Artist设置图例,这时只需手动传入handles:

line_up, = plt.plot([1,2,3], label='Line 2')
line_down, = plt.plot([3,2,1], label='Line 1')
plt.legend(handles=[line_up, line_down])

当然了,相应的可以传入标签:

line_up, = plt.plot([1,2,3], label='Line 2')
line_down, = plt.plot([3,2,1], label='Line 1')
plt.legend([line_up, line_down], ['Line Up', 'Line Down'])

为一类Artist设置图例

并不是所有的Artist都能被自动设置为图例,也不是所有Artist都需要被设置为图例。

假如我们想要为所有红颜色的玩意儿设置图例:

import matplotlib.patches as mpatches

x = np.arange(1, 4)
fig, ax = plt.subplots()
for i in range(1, 10):
ax.plot(x, i * x, color = "red" if i % 2 else "blue") red_patch = mpatches.Patch(color="red")
# red_patch: <matplotlib.patches.Patch object at 0x00000228D0D4BF60>
plt.legend(handles=[red_patch], labels=["red line"])
plt.show()

如果没理解错,通过patches.Patch构造了一个颜色为红色的Artist类,然后legend()就会对所有满足条件的Artist的类进行处理(其实也用不了处理啊,只是加了图例)。错啦错啦,实际上,就是简单地造了一个颜色为红色的片,价格red line标签而已,跟已有的Artist没啥关系。



实际上,图例并不十分依赖于现有的Artist,我们完全可以随心所欲地添加:

import matplotlib.lines as mlines
blue_line = mlines.Line2D([], [], color='blue', marker='*',
markersize=15, label='Blue stars')
plt.legend(handles=[blue_line]) plt.show()

Legend 的位置 loc, bbox_to_anchor

legend()提供了loc参数,可以处理一般的位置。而bbox_to_anchor参数可以更加有效强大地来定位:

x = np.arange(1, 4)
fig, ax = plt.subplots()
for i in range(1, 10):
ax.plot(x, i * x, color = "red" if i % 2 else "blue", label="line{0}".format(i)) plt.legend(bbox_to_anchor=(1, 1),
bbox_transform=plt.gcf().transFigure)
plt.show()



bbox_to_anchor=(1,1)表示legend的位置在右上角,因为bbox_transform,我们将坐标转换为了当前figure的坐标系,也就是图例会放在整个图片的右上角,如果我们去掉这个选项:

plt.legend(bbox_to_anchor=(1, 1))



这个时候和下面是等价的:

plt.legend(bbox_to_anchor=(1,1),
bbox_transform=ax.transAxes)

即,此时的(1,1)表示的是Axes的右上角。

当我们这么做的时候:

plt.legend(bbox_to_anchor=(1, 1),
bbox_transform=ax.transData)

这个时候以数据,也就是我们看到的坐标为依据:

一个具体的例子

下面会用到的一些参数分析:

bbox_to_anchor: (x, y, width, height) 说实话,我并没有搞懂width, height的含义,有的时候能调正宽度,有的时候又不能

ncol: 图例的列数,有些时候图例太多,让他分成俩列三列啊

boderraxespad: axes与图例边界的距离。


plt.subplot(211)
plt.plot([1, 2, 3], label="test1")
plt.plot([3, 2, 1], label="test2") # Place a legend above this subplot, expanding itself to
# fully use the given bounding box.
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left',
ncol=2, mode="expand", borderaxespad=0.) plt.subplot(223)
plt.plot([1, 2, 3], label="test1")
plt.plot([3, 2, 1], label="test2")
# Place a legend to the right of this smaller subplot.
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=1.) plt.show()

同一个Axes多个legend

如果我们多次使用legend(),实际上并不会生成多个图例:

fig, ax = plt.subplots()
line1, = ax.plot([1, 2, 3])
line2, = ax.plot([3, 2, 1])
ax.legend([line1], ["line1"])
ax.legend([line2], ["line2"]) plt.show()



为此,我们需要手动添加图例:

fig, ax = plt.subplots()
line1, = ax.plot([1, 2, 3])
line2, = ax.plot([3, 2, 1])
legend1 = ax.legend([line1], ["line1"], loc="upper right")
ax.add_artist(legend1)
ax.legend([line2], ["line2"]) plt.show()

Legend Handlers

没看懂啥意思。

from matplotlib.legend_handler import HandlerLine2D

line1, = plt.plot([3, 2, 1], marker='o', label='Line 1')
line2, = plt.plot([1, 2, 3], marker='o', label='Line 2') plt.legend(handler_map={line1: HandlerLine2D(numpoints=4)})


from numpy.random import randn z = randn(10) red_dot, = plt.plot(z, "ro", markersize=15)
# Put a white cross over some of the data.
white_cross, = plt.plot(z[:5], "w+", markeredgewidth=3, markersize=15) plt.legend([red_dot, (red_dot, white_cross)], ["Attr A", "Attr A+B"])



从这例子中感觉,就是legend_handler里面有一些现成,稀奇古怪的图例供我们使用?

from matplotlib.legend_handler import HandlerLine2D, HandlerTuple

p1, = plt.plot([1, 2.5, 3], 'r-d')
p2, = plt.plot([3, 2, 1], 'k-o') l = plt.legend([(p1, p2)], ['Two keys'], numpoints=1,
handler_map={tuple: HandlerTuple(ndivide=None)})

自定义图例处理程序

这一节呢,主要就是告诉我们,如何通过handler_map这个参数,传入一个映射,可以构造任意?奇形怪状的图例?不过参数也忒多了吧,不过感觉蛮有用的。

import matplotlib.patches as mpatches

class AnyObject(object):
pass class AnyObjectHandler(object):
def legend_artist(self, legend, orig_handle, fontsize, handlebox):
x0, y0 = handlebox.xdescent, handlebox.ydescent
width, height = handlebox.width, handlebox.height
patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red',
edgecolor='black', hatch='xx', lw=3,
transform=handlebox.get_transform())
handlebox.add_artist(patch)
return patch plt.legend([AnyObject()], ['My first handler'],
handler_map={AnyObject: AnyObjectHandler()})

from matplotlib.legend_handler import HandlerPatch

class HandlerEllipse(HandlerPatch):
def create_artists(self, legend, orig_handle,
xdescent, ydescent, width, height, fontsize, trans):
center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent
p = mpatches.Ellipse(xy=center, width=width + xdescent,
height=height + ydescent)
self.update_prop(p, orig_handle, legend)
p.set_transform(trans)
return [p] c = mpatches.Circle((0.5, 0.5), 0.25, facecolor="green",
edgecolor="red", linewidth=3)
plt.gca().add_patch(c) plt.legend([c], ["An ellipse, not a rectangle"],
handler_map={mpatches.Circle: HandlerEllipse()})

"""都是啥和啥啊。。。"""
class AnyObject(object):
pass class AnyObjectHandler(object):
def legend_artist(self, legend, orig_handle, fontsize, handlebox):
x0, y0 = handlebox.xdescent, handlebox.ydescent
width, height = handlebox.width, handlebox.height
patch = mlines.Line2D([1, 2, 3, 4, 6], [1, 2, 3, 4, 6], linewidth=width/2, color='red',
transform=handlebox.get_transform())
handlebox.add_artist(patch)
return patch plt.legend([AnyObject()], ['My first handler'],
handler_map={AnyObject: AnyObjectHandler()})

函数链接

plt.lengend()-添加图例

get_legend_handles_labels()-获取图例处理对象和对应的标签

matplotlib.patches-包括向量,圆,矩形,多边形等等

legend_artist

matplotlib 进阶之Legend guide的更多相关文章

  1. matplotlib中的legend()—显示图例

    源自  matplotlib中的legend()——用于显示图例 -- 博客园 http://www.cnblogs.com/yinheyi/p/6792120.html legend()的一个用法: ...

  2. matplotlib 进阶之Tight Layout guide

    目录 简单的例子 Use with GridSpec Legend and Annotations Use with AxesGrid1 Colorbar 函数链接 matplotlib教程学习笔记 ...

  3. matplotlib 进阶之Constrained Layout Guide

    目录 简单的例子 Colorbars Suptitle Legends Padding and Spacing spacing with colobars rcParams Use with Grid ...

  4. matplotlib 入门之Usage Guide

    文章目录 Usage Guide plotting函数的输入 matplotlib, pyplot, pylab, 三者的联系 Coding style Backends 后端 matplotlib教 ...

  5. 【Python学习笔记】调整matplotlib的图例legend的位置

    有时默认的图例位置不符合我们的需要,那么我们可以使用下面的代码对legend位置进行调整. plt.legend(loc='String or Number', bbox_to_anchor=(num ...

  6. 【转】matplotlib制图——图例legend

    转自:https://www.cnblogs.com/alimin1987/p/8047833.html import matplotlib.pyplot as pltimport numpy as ...

  7. matplotlib中的legend()——用于显示图例

    legend()的一个用法: 当我们有多个 axes时,我们如何把它们的图例放在一起呢?? 我们可以这么做: import matplotlib.pyplot as plt import numpy ...

  8. 【python】matplotlib进阶

    参考文章:https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/ 几个重要对象:图像.子图.坐标轴.记号 figure:图像, subplo ...

  9. matplotlib 进阶之origin and extent in imshow

    目录 显示的extent Explicit extent and axes limits matplotlib教程学习笔记 import numpy as np import matplotlib.p ...

随机推荐

  1. day27 网络编程

    1.OSI七层协议 1.七层划分为:应用层,表示层.会话层.传输层.网络层.数据链路层.物理层 2.五层划分:应用层.传输层.网络层.数据链路层.物理层 应用层: 表示层: 会话层: 传输层:四层交换 ...

  2. Hadoop【MR开发规范、序列化】

    Hadoop[MR开发规范.序列化] 目录 Hadoop[MR开发规范.序列化] 一.MapReduce编程规范 1.Mapper阶段 2.Reducer阶段 3.Driver阶段 二.WordCou ...

  3. express系列(1)概述

    在 Node.js 出现之前,前后端的开发必须使用不同的语言进行.为此你需要学习多种的语言和框架.有了 Node.js 之后,你就可以使用一门语言在前后端开发中自由切换,这是最吸引人的地方. 什么是 ...

  4. adb命令对app进行测试

    1.何为adb adb android  debug  bridge ,sdk包中的工具,将Platform-tooks 和tools  两个路径配置到环境变量中 2.SDK下载链接:http://t ...

  5. Java 将Word转为OFD

    通常在工作中比较常用到的Microsoft Word是属于国外的文档内容编辑软件,其编译技术均属国外.而OFD是一种我国的自主文档格式,在某些特定行业或企业的文档存储技术上是一种更为安全的选择.下面将 ...

  6. Mysql配置 主主同步

    目录 一.准备 二.操作 A数据库操作 B数据库操作 A数据库操作 一.准备 1.两个数据库版本最好一致 2.两个数据库内数据保持一致,若不一致,可手动调整,比如A比B多一个库,那将这个库导入到B库, ...

  7. 时间同步——TSN协议802.1AS介绍

    前言之前的主题TSN的发展历史和协议族现状介绍了TSN技术的缘起,最近一期的主题TSN协议导读从定时与同步.延时.可靠性.资源管理四个方面,帮助大家了解TSN协议族包含哪些子协议,以及这些子协议的作用 ...

  8. 新手指南:顶象验证码如何接入微信小程序?

    自2017年小程序发布以来,经过4年的快速发展,小程序已然成为企业互联网布局不可或缺的一环.无论是互联网企业还是拥抱互联网的传统企业,无论是服务导向型企业还是产品导向型企业,小程序都为用户提供了一种轻 ...

  9. Android: Client-Server communication by JSON

    Refer to: http://osamashabrez.com/client-server-communication-android-json/ This is a sequel to my l ...

  10. [BUUCTF]REVERSE——[ACTF新生赛2020]easyre

    [ACTF新生赛2020]easyre 附件 步骤 查壳,32位程序,upx壳儿 脱完壳儿,扔进ida 分析 一开始给我们定义了一个数组, v4=[42,70,39,34,78,44,34,40,73 ...