AOJ/搜索与递归及分治法习题集
ALDS1_4_A-LinearSearch.
Description:
You are given a sequence of n integers S and a sequence of different q integers T. Write a program which outputs C, the number of integers in T which are also in the set S.
Input:
In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers are given.
Output:
Print C in a line.
Constraints:
n ≤ 10000
q ≤ 500
0 ≤ an element in S ≤ 109
0 ≤ an element in T ≤ 109
SampleInput1:
5
1 2 3 4 5
3
3 4 1
SampleOutput1:
3
SampleInput2:
3
3 1 2
1
5
SampleOutput2:
0
Codes:
//#define LOCAL
#include <cstdio>
int search(int A[], int n, int key) {
int i = 0; A[n] = key;
while(A[i] != key) ++i;
return i!=n;
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int i, n, q, key, sum = 0, A[10010];
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]);
scanf("%d", &q);
for(i=0; i<q; ++i) {
scanf("%d", &key);
if(search(A, n, key)) ++sum;
}
printf("%d\n", sum);
return 0;
}
ALDS1_4_B-BinarySearch.
Description:
You are given a sequence of n integers S and a sequence of different q integers T. Write a program which outputs C, the number of integers in T which are also in the set S.
Input:
In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers are given.
Output:
Print C in a line.
Constraints:
Elements in S is sorted in ascending order
n ≤ 100000
q ≤ 50000
0 ≤ an element in S ≤ 109
0 ≤ an element in T ≤ 109
SampleInput1:
5
1 2 3 4 5
3
3 4 1
SampleOutput1:
3
SampleInput2:
3
1 2 3
1
5
SampleOutput2:
0
Codes:
//#define LOCAL
#include <cstdio>
int n, A[1000010];
int binarySearch(int key) {
int left = 0, right = n;
while(left < right) {
int mid = (left+right)/2;
if(key > A[mid]) left = mid+1;
else if(key == A[mid]) return 1;
else right = mid;
}
return 0;
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int i, q, key, sum = 0;
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]);
scanf("%d", &q);
for(i=0; i<q; ++i) {
scanf("%d", &key);
if(binarySearch(key)) ++sum;
}
printf("%d\n", sum);
return 0;
}
ALDS1_4_C-Dictionary.
Description:
Your task is to write a program of a simple dictionary which implements the following instructions:
insert str: insert a string str in to the dictionary
find str: if the distionary contains str, then print 'yes', otherwise print 'no'
Input:
In the first line n, the number of instructions is given. In the following n lines, n instructions are given in the above mentioned format.
Output:
Print yes or no for each find instruction in a line.
Constraints:
A string consists of 'A', 'C', 'G', or 'T'
1 ≤ length of a string ≤ 12
n ≤ 1000000
SampleInput1:
5
insert A
insert T
insert C
find G
find A
SampleOutput1:
no
yes
SampleInput2:
13
insert AAA
insert AAC
insert AGA
insert AGG
insert TTT
find AAA
find CCC
find CCC
insert CCC
find CCC
insert T
find TTT
find T
SampleOutput2:
yes
no
no
yes
yes
yes
Codes:
//#define LOCAL
#include <cstdio>
#include <cstring>
#define M 1046527
#define NIL (-1)
#define L 14
char H[M][L];
int getChar(char ch) {
if(ch == 'A') return 1;
else if(ch == 'C') return 2;
else if(ch == 'G') return 3;
else if(ch == 'T') return 4;
else return 0;
}
long long getKey(char str[]) {
int len = strlen(str);
long long sum = 0, p = 1, i;
for(i=0; i<len; ++i) {
sum += p*(getChar(str[i]));
p *= 5;
}
return sum;
}
int h1(int key) {return key%M;}
int h2(int key) {return 1+(key%(M-1));}
int find(char str[]) {
long long key, i, h;
key = getKey(str);
for(i=0; ; ++i) {
h = (h1(key)+i*h2(key))%M;
if(strcmp(H[h], str) == 0) return 1;
else if(strlen(H[h]) == 0) return 0;
}
return 0;
}
int insert(char str[]) {
long long key, i, h;
key = getKey(str);
for(i=0; ; ++i) {
h = (h1(key)+i*h2(key))%M;
if(strcmp(H[h], str) == 0) return 1;
else if(strlen(H[h]) == 0) {
strcpy(H[h], str);
return 0;
}
}
return 0;
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int i, n, h;
char str[L], com[9];
for(i=0; i<M; ++i) H[i][0] = '\0';
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s %s", com, str);
if(com[0] == 'i') insert(str);
else {
if(find(str)) printf("yes\n");
else printf("no\n");
}
}
return 0;
}
ALDS1_4_D-Allocation.
Codes:
#include <iostream>
using namespace std;
#define MAX 100000
typedef long long llong;
int n, k; llong T[MAX];
int check(llong P) {
int i = 0;
for(int j=0; j<k; ++j) {
llong s = 0;
while(s+T[i] <= P) {
s += T[i++];
if(i == n) return n;
}
}
return i;
}
int solve() {
llong mid, left = 0, right = 1000000000;
while(right-left > 1) {
mid = (left+right)/2;
int v = check(mid);
if(v >= n) right = mid;
else left = mid;
}
return right;
}
int main()
{
cin >> n >> k;
for(int i=0; i<n; ++i) cin >> T[i];
cout << solve() << endl;
}
ALDS1_5_A-ExhaustiveSearch.
Description:
Write a program which reads a sequence A of n elements and an integer M, and outputs "yes" if you can make M by adding elements in A, otherwise "no". You can use an element only once.
You are given the sequence A and q questions where each question contains Mi.
Input:
In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers (Mi) are given.
Output:
For each question Mi, print yes or no.
Constraints:
n ≤ 20
q ≤ 200
1 ≤ elements in A ≤ 2000
1 ≤ Mi ≤ 2000
SampleInput:
5
1 5 7 10 21
8
2 4 17 8 22 21 100 35
SampleOutput:
no
no
yes
yes
yes
yes
no
no
Codes:
//#define LOCAL
#include <cstdio>
int n, A[50];
int solve(int i, int k) {
if(!k) return 1;
if(i >= n) return 0;
return solve(i+1, k)||solve(i+1, k-A[i]);
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int i, q, k;
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]);
scanf("%d", &q);
for(i=0; i<q; ++i) {
scanf("%d", &k);
if(solve(0, k)) printf("yes\n");
else printf("no\n");
}
return 0;
}
ALDS1_5_C-KochCurve.
Description:
Write a program which reads an integer n and draws a Koch curve based on recursive calles of depth n.
The Koch curve is well known as a kind of fractals.
You can draw a Koch curve in the following algorithm:
Divide a given segment (p1, p2) into three equal segments.
Replace the middle segment by the two sides of an equilateral triangle (s, u, t) of the same length as the segment.
Repeat this procedure recursively for new segments (p1, s), (s, u), (u, t), (t, p2).
You should start (0, 0), (100, 0) as the first segment.
Input:
An integer n is given.
Output:
Print each point (x, y) of the Koch curve. Print a point in a line. You should start the point(0, 0), which is the endpoint of the first segment and end with the point (100, 0), the other endpoint so that you can draw the Koch curve as an unbroken line. Each solution should be given as a decimal with an arbitrary number of fractional digits, and with an absolute error of at most 10-4.
Constraints:
0 ≤ n ≤ 6
SampleInput1:
1
SampleOutput1:
0.00000000 0.00000000
33.33333333 0.00000000
50.00000000 28.86751346
66.66666667 0.00000000
100.00000000 0.00000000
SampleInput2:
2
SampleOutput2:
0.00000000 0.00000000
11.11111111 0.00000000
16.66666667 9.62250449
22.22222222 0.00000000
33.33333333 0.00000000
38.88888889 9.62250449
33.33333333 19.24500897
44.44444444 19.24500897
50.00000000 28.86751346
55.55555556 19.24500897
66.66666667 19.24500897
61.11111111 9.62250449
66.66666667 0.00000000
77.77777778 0.00000000
83.33333333 9.62250449
88.88888889 0.00000000
100.00000000 0.00000000
Codes:
//#define LOCAL
#include <cstdio>
#include <cmath>
struct Point{ double x, y;};
void koch(int n, Point a, Point b) {
if(!n) return ;
Point s, t, u;
double th = M_PI*60.0/180.0;
s.x = (2.0*a.x+1.0*b.x)/3.0;
s.y = (2.0*a.y+1.0*b.y)/3.0;
t.x = (1.0*a.x+2.0*b.x)/3.0;
t.y = (1.0*a.y+2.0*b.y)/3.0;
u.x = (t.x-s.x)*cos(th)-(t.y-s.y)*sin(th)+s.x;
u.y = (t.x-s.x)*sin(th)+(t.y-s.y)*cos(th)+s.y;
koch(n-1, a, s);
printf("%.8f %.8f\n", s.x, s.y);
koch(n-1, s, u);
printf("%.8f %.8f\n", u.x, u.y);
koch(n-1, u, t);
printf("%.8f %.8f\n", t.x, t.y);
koch(n-1, t, b);
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int n; Point a, b;
scanf("%d", &n);
a.x = 0, a.y = 0, b.x = 100, b.y = 0;
printf("%.8f %.8f\n", a.x, a.y);
koch(n, a, b);
printf("%.8f %.8f\n", b.x, b.y);
return 0;
}
AOJ/搜索与递归及分治法习题集的更多相关文章
- AOJ/搜索递归分治法习题集
ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...
- Leetcode Lect4 二叉树中的分治法与遍历法
在这一章节的学习中,我们将要学习一个数据结构——二叉树(Binary Tree),和基于二叉树上的搜索算法. 在二叉树的搜索中,我们主要使用了分治法(Divide Conquer)来解决大部分的问题. ...
- 分治法避免定义多个递归函数,应该使用ResultType
总结:对二叉树应用分治法时,应避免定义多个递归函数,当出现需要递归求解多种的结果时,尽量使用ResultType来让一次递归返回多种结果. 题目:Binary Tree Maximum Path Su ...
- ACM/ICPC 之 分治法入门(画图模拟:POJ 2083)
题意:大致就是要求画出这个有规律的Fractal图形了= = 例如 1 对应 X 2 对应 X X X X X 这个题是个理解分治法很典型的例子(详情请参见Code) 分治法:不断缩小规 ...
- 分治法(一)(zt)
这篇文章将讨论: 1) 分治策略的思想和理论 2) 几个分治策略的例子:合并排序,快速排序,折半查找,二叉遍历树及其相关特性. 说明:这几个例子在前面都写过了,这里又拿出来,从算法设计的策略的角度把它 ...
- C语言实现快速排序法(分治法)
title: 快速排序法(quick sort) tags: 分治法(divide and conquer method) grammar_cjkRuby: true --- 算法原理 分治法的基本思 ...
- p1257 平面上最接近点对---(分治法)
首先就是一维最接近点的情况... #include<iostream> #include<cstdio> #include<cstring> #include< ...
- 分治法——归并排序(mergesort)
首先上代码. #include <iostream> using namespace std; int arr[11]; /*两个序列合并成一个序列.一共三个序列,所以用 3 根指针来处理 ...
- python 实现分治法的几个例子
分治法所能解决的问题一般具有以下几个特征: 1) 该问题的规模缩小到一定的程度就可以容易地解决 2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质. 3) 利用该问题分解出的子 ...
随机推荐
- C# wpf中DataGrid 支持汇总行
最近有一个需求,需要汇总金额,份额等字段.我们使用的是原生的WPF控件,自己开发了一套Template.而没有使用比较成熟的第三方控件.所以这个功能得自己开发.并且要做成控件层次的功能. 当然也可以这 ...
- linux上传下载文件(转载https://www.jb51.net/article/143112.htm)
转载于:https://www.jb51.net/article/143112.htmLinux下目录复制:本机->远程服务器 1 scp -r /home/shaoxiaohu/test1 z ...
- springboot系列总结(一)---初识springboot
Spring Boot是一个简化Spring开发的框架.用来监护spring应用开发,约定大于配置,去繁就简,just run 就能创建一个独立的,产品级的应用. 一说springboot ,Java ...
- ubuntu18.04 更换镜像源
废话不多说,直接上图了 1. 首先选software & update 2. 点这个,然后选择others,选择China 建议选择清华源,不建议选择mirrors.aliyun.com,因为 ...
- 前后端数据交互(四)——fetch 请求详解
fetch 是 XMLHttpRequest 的升级版,使用js脚本发出网络请求,但是与 XMLHttpRequest 不同的是,fetch 方式使用 Promise,相比 XMLHttpReques ...
- JVM双亲委派模型及其优点
JVM双亲委派模型及其优点 什么是双亲委派模型? 双亲委派模型: 如果一个类加载器收到了类加载请求,它并不会自己先去加载,而是把这个请求委托给父类的加载器去执行,如果父类加载器还存在其父类加载器, ...
- 剑指offer计划9(动态规划中等版)---java
1.1.题目1 剑指 Offer 42. 连续子数组的最大和 1.2.解法 得到转移方程后,单次遍历. 当前面的连续子数组的和比较是否大于0,是则加起来, 若小于零,则当前的值就可当子数组的开头. 判 ...
- Linux下Sed命令替换文件中的所有IP
命令: sed -ri 's/([0-9]{1,3}\.){3}[0-9]{1,3}/localhost/g' es_create_index.sh 如图:
- chrome插件开发学习(一)
两个不错的网址: 360chrome插件开发文档:http://open.chrome.360.cn/extension_dev/manifest.html 图灵 chrome插件开发于应用 电子书: ...
- python 修改图像大小和分辨率
1 概念: 分辨率,指的是图像或者显示屏在长和宽上各拥有的像素个数.比如一张照片分辨率为1920x1080,意思是这张照片是由横向1920个像素点和纵向1080个像素点构成,一共包含了1920x108 ...