POJ-3268.SilverCowParty.(最短路 + 图的转置)
本题思路:对原图和原图的逆图分别用一次最短路,找出最大值即可。
一开始是我是对每个顶点spfa搜了一波,结果判题时间巨长,还好这个题的数据量不是很大,所以就用了另一种思路。
参考代码:spfa单结点爆搜版
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std; const int maxn = + , INF = 0x3f3f3f3f;
struct edge {
int to, cost;
};
int n, m, x, ans, dist[maxn];
vector<edge> G[maxn];
bool vis[maxn]; void addedge(int u, int v, int w) {
G[u].push_back({v, w});
} int spfa(int source, int aid) {
memset(vis, false, sizeof vis);
for(int i = ; i <= n; i ++)
dist[i] = (i == source ? : INF);
queue <int> Q;
Q.push(source);
vis[source] = true;
while(!Q.empty()) {
int now = Q.front();
Q.pop();
for(int i = ; i < G[now].size(); i ++) {
edge e = G[now][i];
if(dist[e.to] > dist[now] + e.cost) {
dist[e.to] = dist[now] + e.cost;
if(!vis[e.to]) Q.push(e.to);
}
}
}
return dist[aid];
} int main () {
ans = ;
int u, v, w;
cin >> n >> m >> x;
for(int i = ; i <= m; i ++) {
cin >> u >> v >> w;
addedge(u, v, w);
}
for(int i = ; i <= n; i ++)
ans = max(spfa(i, x) + spfa(x, i), ans);
cout << ans << endl;
return ;
}
对原图和逆图分别进行一次Dijkstra的终极版本
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std; const int maxn = + , INF = 0x3f3f3f3f;
struct edge {
int to, cost;
};
int n, m, x, k, ans, dist1[maxn], dist2[maxn], G[maxn][maxn];;
bool vis[maxn]; void Dijkstra(int lowcost[]) {
for(int i = ; i <= n; i ++)
lowcost[i] = INF;
lowcost[x] = ;
memset(vis, false, sizeof vis);
for(int i = ; i <= n; i ++) {
int minf = INF;
for(int j = ; j <= n; j ++)
if(minf > lowcost[j] && !vis[j]) {
k = j;
minf = lowcost[j];
}
vis[k] = true;
for(int j = ; j <= n; j ++)
if(!vis[j] && lowcost[j] > lowcost[k] + G[k][j])
lowcost[j] = lowcost[k] + G[k][j];
}
} int main () {
ans = ;
int u, v, w;
cin >> n >> m >> x;
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
if(i == j) G[i][j] = ;
else G[i][j] = INF;
for(int i = ; i <= m; i ++) {
cin >> u >> v >> w;
G[u][v] = min(G[u][v], w);
}
Dijkstra(dist1);
for(int i = ; i <= n; i ++)
for(int j = ; j < i; j ++)
if(G[i][j]) swap(G[i][j], G[j][i]);
Dijkstra(dist2);
for(int i = ; i <= n; i ++)
ans = max(ans, dist1[i] + dist2[i]);
cout << ans << endl;
return ;
}
POJ-3268.SilverCowParty.(最短路 + 图的转置)的更多相关文章
- POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】
Silver Cow Party Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Su ...
- POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。
POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...
- DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards
题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...
- POJ 3268 Silver Cow Party (最短路径)
POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...
- POJ 1161 Walls(最短路+枚举)
POJ 1161 Walls(最短路+枚举) 题目背景 题目大意:题意是说有 n个小镇,他们两两之间可能存在一些墙(不是每两个都有),把整个二维平面分成多个区域,当然这些区域都是一些封闭的多边形(除了 ...
- [NOIP2017]逛公园 最短路图 拓扑序DP
---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...
- 【NOIP2017】逛公园(最短路图,拓扑排序,计数DP)
题意: 策策同学特别喜欢逛公园. 公园可以看成一张 N 个点 M 条边构成的有向图,且没有自环和重边.其中 1 号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花 ...
- [JZOJ5279]香港记者题解--最短路图
[JZOJ5279]香港记者题解--最短路图 题目链接 过 于 暴 力 分析 有一个naiive的想法就是从1到n跑最短路,中途建图,然后在图上按字典序最小走一遍,然而·这是不行的,你这样跳不一定能跳 ...
- Aizu - 1383 Pizza Delivery (最短路图+DAG上的割边)
题意:给出一张有向图,每条边有长度,对于每条边,你要回答将该边的方向取反后,从起点到终点的最短距离是增加or减小or不变. 首先求出起点到所有点的最短距离和所有点到终点的最短距离(两次DIjkstra ...
随机推荐
- python:文件的逐行操作
逐行遍历文件: 方法一:一次读入,分行处理: readlines() 缺点:一次读入所有信息,对于大文件来说会消耗很多计算机内存 fname = input('请输入要打开的文件名称:') fo = ...
- zabbix_agent添加到系统服务启动(八)
Centos6.5上安装了zabbix_agent后,需要把zabbix_agent添加到系统服务启动,要不然每次要一长串路径再启动,挺麻烦的. 步骤: 1)拷贝zabbix解压包里的zabbix_a ...
- 从Firebird2.5 迁移到 Firebird3.0 手记
新血来潮的下了FB3.0,一试用发现不少问题,搞来搞去的把头都搞大了,写个笔头记念一下. 首先发现是FB2.5的数据库不能直接用在FB3.0上,看文档和群友指点,原来需要用FB2.5的gbak.exe ...
- python虚拟环境virtualenv简介
参考网站: https://realpython.com/python-virtual-environments-a-primer/ 一. 创建一个新的虚拟环境 # Python 2: $ virtu ...
- git 更新远程分支列表
git remote update origin --prune git remote update origin -p
- 在Docker中监控Java应用程序的5个方法
译者注:Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化.通常情况下,监控的主要目的在于:减少宕机 ...
- Web jsp开发学习——网上直播聊天室的简单开发
整个界面为chat.jsp: 如果用户没有登录,就不能进行聊天. 为将发言的句子传到页面上,要设置一个<iframe></iframe>虚拟框架,将allmessage.jsp ...
- μC/Probe尝鲜
μC/Probe 1.添加文件 2.配置probe_com_cfg.h 2.1.选择接口 #define PROBE_COM_CFG_RS232_EN DEF_ENABLED /* Configure ...
- HTML翻转菜单练习
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- nodejs通过mocha处理运行文件路径下所有js文件
1.获取文件路径: 方式一:整个js文件使用 var path=require('path');var public_path=path.resolve('../testcase/listData/* ...