比较简单的莫队题,主要是为了熟练板子。

先考虑固定区间时我们怎么计算,假设区间\([l,r]\)内颜色为\(i\)的袜子有\(cnt_i\)只,那么对于颜色\(i\)来说,凑齐一双的情况个数为:

  • \(cnt_i=0\)时,贡献为\(0\),这个我们特别处理(显然吧)
  • \(cnt_i>0\)时,贡献为\(cnt_i\cdot (cnt_i-1)\) (先挑出一只再挑另一只)

最后我们考虑所有颜色以及总情况数,那么此时凑出一双概率为:

\[\frac{\sum cnt_i\cdot(cnt_i-1)}{(r-l+1)\cdot(r-l-2)}
\]

首先还是考虑如何快速地转移区间,假设我们已经求出了\([l,r]\)的贡献(即上式的分母部分)\(ans\),那么我们考虑:

  • 推出\([l-1,r],[l,r+1]\)。假设此时加入的袜子颜色为\(i\),那么\(ans=ans-cnt_i\cdot(cnt_i-1)+cnt_i\cdot(cnt_i+1)\)
  • 推出\([l+1,r],[l,r-1]\)。假设此时加入的袜子颜色为\(i\),那么\(ans=ans-cnt_i\cdot(cnt_i-1)+(cnt_i-2)\cdot(cnt_i-1)\)

然后就可以\(O(1)\)转移啦,剩下的就是莫队基本操作了

CODE

#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=50005;
struct data
{
int l,r,id;
long long ans1,ans2;
}q[N];
int n,m,L,R,a[N],cnt[N],blk[N],size;
long long res;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(long long x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline bool cmp1(data a,data b)
{
if (blk[a.l]==blk[b.l]) return blk[a.l]&1?a.r<b.r:a.r>b.r;
return blk[a.l]<blk[b.l];
}
inline bool cmp2(data a,data b)
{
return a.id<b.id;
}
inline void add(int col)
{
if (++cnt[col]>=2) res+=1LL*cnt[col]*(cnt[col]-1)-1LL*(cnt[col]-1)*(cnt[col]-2);
}
inline void del(int col)
{
if (--cnt[col]>=1) res+=1LL*cnt[col]*(cnt[col]-1)-1LL*cnt[col]*(cnt[col]+1);
}
inline long long gcd(long long n,long long m)
{
return m?gcd(m,n%m):n;
}
inline void divnum(long long a,long long b)
{
if (!a) { puts("0/1"); return; }
long long d=gcd(a,b); a/=d; b/=d;
write(a); putchar('/'); write(b); putchar('\n');
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m); size=sqrt(n);
for (i=1;i<=n;++i) read(a[i]),blk[i]=(i-1)/size+1;
for (i=1;i<=m;++i) read(q[i].l),read(q[i].r),q[i].id=i;
sort(q+1,q+m+1,cmp1); L=q[1].l; R=q[1].r;
for (i=L;i<=R;++i) add(a[i]); q[1].ans1=res; q[1].ans2=1LL*(R-L+1)*(R-L);
for (i=2;i<=m;++i)
{
while (L<q[i].l) del(a[L++]); while (L>q[i].l) add(a[--L]);
while (R>q[i].r) del(a[R--]); while (R<q[i].r) add(a[++R]);
q[i].ans1=res; q[i].ans2=1LL*(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
}
for (sort(q+1,q+m+1,cmp2),i=1;i<=m;++i) divnum(q[i].ans1,q[i].ans2);
return 0;
}

Luogu P1494 [国家集训队]小Z的袜子的更多相关文章

  1. luogu P1494 [国家集训队]小Z的袜子 ( 普 通 )

    题目:    链接:https://www.luogu.org/problemnew/show/P1494 题意:一些袜子排成一排,每个袜子有固定的颜色.                        ...

  2. 【luogu P1494 [国家集训队]小Z的袜子】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1494 #include <cstdio> #include <algorithm> ...

  3. P1494 [国家集训队]小Z的袜子

    题目 P1494 [国家集训队]小Z的袜子 解析 在区间\([l,r]\)内, 任选两只袜子,有 \[r-l+1\choose2\] \[=\frac{(r-l+1)!}{2!(r-l-1)!}\] ...

  4. P1494 [国家集训队]小Z的袜子/莫队学习笔记(误

    P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...

  5. P1494 [国家集训队]小Z的袜子(luogu)

    P1494 小Z的袜子 终于了解了莫队算法(更专业的名称Square Root Decomposition of Queries) 莫队算法: 一般来说解决静态(实际上也有修改的但复杂度更高)的离线( ...

  6. 洛谷 P1494 [国家集训队] 小Z的袜子

    题目概述: 小Z把N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务 ...

  7. P1494 [国家集训队]小Z的袜子(莫队)

    题目链接:https://www.luogu.org/problemnew/show/P1494 题目大意:中文题目 具体思路:计算概率的时候,每一次是区间的移动,每一次移动,记得先将原来的记录的影响 ...

  8. 洛谷 P1494 [国家集训队]小Z的袜子(莫队)

    题目链接:https://www.luogu.com.cn/problem/P1494 一道很经典的莫队模板题,然而每道莫队题的大体轮廓都差不多. 首先莫队是一种基于分块的算法,它的显著特点就是: 能 ...

  9. P1494 [国家集训队]小Z的袜子(莫队算法)

    莫队板子 代码 #include <cstdio> #include <algorithm> #include <cstring> #include <cma ...

随机推荐

  1. html基本标签(慕课网)

    html标签: 1.<q>标签,短文本引用(quote,引用) 注解:引用短文本,比如引用古人的一句话 ,注意引用的文本不需要再加双引号. <q>标签的真正关键点不是它的默认样 ...

  2. Backbone.js学习之旅(一)

    前言 刚到粑粑公司,就学习各种框架,进行各种开发,为了纪念挥泪的青春,只好写下…… 希望能合您胃口^_^!!! The First(文件准备) backobone 强制依赖于 underscore.j ...

  3. [20180606]如何dump数据库里面的汉字.txt

    [20180606]如何dump数据库里面的汉字.txt --//链接http://www.itpub.net/thread-2102613-1-2.html的问题. 比如:col 41: [42]e ...

  4. C++中cin.clear()的用法

    我们谈谈cin.clear的作用,第一次看到这东西,很多人以为就是清空cin里面的数据流,而实际上却与此相差很远,首先我们看看以下代码: #include <iostream>  usin ...

  5. javascript打印1-100内的质数

    <script> /* 质数定义: 质数(prime number)又称素数,有无限个. 质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 1不是质数 */ //声明变量 ...

  6. sql 删除默认索引,对象 依赖于 列,由于一个或多个对象访问此列

    declare @name varchar(50)select  @name =b.name from sysobjects b join syscolumns aon b.id = a.cdefau ...

  7. [SequenceFile_1] Hadoop 序列文件

    1. 关于 SequenceFile 对于日志文件来说,纯文本不适合记录二进制类型数据,通过 SequenceFile 为二进制键值对提供了持久的数据结构,将其作为日志文件的存储格式时,可自定义键(L ...

  8. 17秋 软件工程 Alpha 事后诸葛亮会议

    题目: 团队作业--Alpha冲刺 17秋 软件工程 Alpha 事后诸葛亮会议 关于评价与建议的反馈 评价1:管理部门我觉得对我已经用处不大了不过对新生用处很大.像学长说的一样,里面不是流程很懂但是 ...

  9. mybatis的xml映射文件

    1,在进行统计查询时候,不想写映射的实体类,这时候设置返回的resultType类型是map <select id="getMap" resultType="jav ...

  10. PC端和移动APP端CSS样式初始化

    CSS样式初始化分为PC端和移动APP端 1.PC端:使用Normalize.css Normalize.css是一种CSS reset的替代方案. 我们创造normalize.css有下面这几个目的 ...