CF1028G Guess the Numbers 构造、记忆化搜索
考虑如果我们当前可以询问\(x\)个数,还剩下\(q\)次询问机会,我们要怎么构造询问方式?
肯定会这么考虑:
找到一个尽可能大的\(P\)满足\([x,P]\)能在每一次能询问\(x\)个数、剩下\(q-1\)次询问机会的情况下被询问出来,然后在这一次询问\(P+1\);
接下来令\(x=P+2\),再去做这一个操作直到\(q\)次询问都被问完。
那么我们现在要求解这个\(P\),也就是要求每一次能询问\(x\)个数、剩下\(q-1\)次询问机会的情况下最长可以求解多长的区间;而我们当前的问题可以看做可以询问\(x\)个数,还剩下\(q\)次询问机会能够求解最长多长的区间,可以发现前者是后者的一个子问题,可以\(DP\)处理。
设\(dp_{x,q}\)表示当前可以询问\(x\)个数,还剩下\(q\)次询问机会时最长的能够处理的区间长度。那么我们的转移如下:
①\(r_0=x\)
②\(r_i = r_{i-1} + dp_{min\{r_i,10000\},q-1} + 1\)
③\(dp_{x,q}=r_{q+1}-r_0\)
其中\(dp_{i,0}=0\),因为没有询问显然啥都不知道
我们每一次需要询问的序列为\(r_i-1\)。
显然复杂度是\(O(5 \times 10^8)\)的,但我们只需要解决\(dp_{1,5}\),其中有很多冗余状态,实际上可以记忆化搜索解决。
然后考虑如何进行询问。
我们的初始的最长解决长度是\(dp_{1,5}\),初始的最小知道的值为\(cur=1\),询问次数为\(q=5\),那么我们按照下面这种方法进行交互:
①构造上面对应的询问序列,询问一次
②得到\(K\)
③如果\(K=-1\)直接退出,否则\(cur=r_K\),最长解决长度变为\(dp_{min(cur,10000),q-1}\)
④\(q--\),回到第\(1\)步
然后就做完了
思路的确比较火
还有\(dp_{1,5}\)就等于\(M\)到底是什么鬼啊喂
#include<bits/stdc++.h>
#define int long long
//This code is written by Itst
using namespace std;
const int MAXN = 10004205361450474ll;
int dp[10010][5];
vector < int > query;
int dfs(int l , int q){
if(!q)
return 0;
if(l > 10000)
l = 10000;
if(dp[l][q])
return dp[l][q];
int r = l;
for(int i = 1 ; i <= l ; ++i)
r = r + dfs(r , q - 1) + 1;
r = r + dfs(r , q - 1);
return dp[l][q] = r - l;
}
void interact(){
int cur = 1 , q = 5 , K;
for(int i = 1 ; i <= 5 ; ++i){
query.clear();
query.push_back(cur - 1);
int now = cur;
for(int j = 1 ; j <= min(cur , 10000ll) ; ++j){
now += dp[min(now , 10000ll)][q - 1];
query.push_back(now);
++now;
}
cout << query.size() - 1 << ' ';
for(int i = 1 ; i < query.size() ; ++i)
cout << query[i] << ' ';
cout << endl;
cin >> K;
if(K == -1)
exit(0);
cur = query[K] + 1;
--q;
}
}
signed main(){
dfs(1 , 5);
interact();
return 0;
}
CF1028G Guess the Numbers 构造、记忆化搜索的更多相关文章
- 牛客国庆集训派对Day2 F、平衡二叉树 【构造+记忆化搜索】
任意门:https://www.nowcoder.com/acm/contest/202/F 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 1048576K,其他语言2097152K6 ...
- hdu 5535 Cake 构造+记忆化搜索
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5355 题意:给定n与m,其中1<= n <= 1e5,2 <= m <= 10;问 ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- 牛客假日团队赛5 F 随机数 BZOJ 1662: [Usaco2006 Nov]Round Numbers 圆环数 (dfs记忆化搜索的数位DP)
链接:https://ac.nowcoder.com/acm/contest/984/F 来源:牛客网 随机数 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...
- cdoj Dividing Numbers 乱搞记忆化搜索
//真tm是乱搞 但是(乱搞的)思想很重要 解:大概就是记忆化搜索,但是原数据范围太大,不可能记下所有的情况的答案,于是我们就在记下小范围内的答案,当dfs落入这个记忆范围后,就不进一步搜索,直接返回 ...
- HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
- hdu3555 Bomb (记忆化搜索 数位DP)
http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others) Memory ...
- CodeForces 173C Spiral Maximum 记忆化搜索 滚动数组优化
Spiral Maximum 题目连接: http://codeforces.com/problemset/problem/173/C Description Let's consider a k × ...
- hdu 1078 FatMouse and Cheese (dfs+记忆化搜索)
pid=1078">FatMouse and Cheese Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...
随机推荐
- Python 基于python+mysql浅谈redis缓存设计与数据库关联数据处理
基于python+mysql浅谈redis缓存设计与数据库关联数据处理 by:授客 QQ:1033553122 测试环境 redis-3.0.7 CentOS 6.5-x86_64 python 3 ...
- 程序员简单打造一个灵活智能的自动化运维系统C#实例程序
你是一个程序员,被派去管理公司500台计算机.这些机器可能需要执行一些自动化任务,一台台手动操作会把你累死.重复性的工作还是交给电脑处理,怎么解决这个问题呢?一个自动化的运维系统是必须的.自己实现的好 ...
- springboot 学习之路 22 (读取自定义文件)
springboot读取自定义的properties文件: package com.huhy.demo.properties; import lombok.Data; import org.sprin ...
- 洗礼灵魂,修炼python(11)--python函数,模块
前面的章节你如果看懂了,基本算是入门了七八了,不过如果你以为python就这么点东西,你觉得很简单啊,那你就错了,真正的东西在后面,前面我说的几大核心其实也不是多么高深多么厉害的,那些东西是基础很常用 ...
- DB2表被锁,如何解锁
原因与解决方案 1.原因:修改表结构表结构发生变化后再对表进行任何操作都不被允许,SQLState为57016(因为表不活动,所以不能对其进行访问),由于修改了表字段权限,导致表处于不可用状态 2.解 ...
- sql 删除默认索引,对象 依赖于 列,由于一个或多个对象访问此列
declare @name varchar(50)select @name =b.name from sysobjects b join syscolumns aon b.id = a.cdefau ...
- Fedora 28 打印机配置 ( HP pro 1136M ,基于Windows 打印服务器使用 smb 协议)
Fedora 28 本身是没有打印服务的.我们需要安装下列软件: System-Config-Printer Common Unix Printing System - CUPS hplip.x86_ ...
- Maven 变量及常见插件配置详解
Maven 的 pom.xml 常用 变量 插件 配置 详解 一.变量 - 自定义变量及内置变量 1. 自定义变量 <properties> <project.build.name& ...
- JRE、JDK概述
JRE(java Runtime Environment java运行环境) 包括java虚拟机(JVM Java Virtual Machine)和Java程序所需的核心类库等, 如果想要运行一个开 ...
- golang的定时任务
golang的定时任务使用的是cron这个包来解决的 官方文档地址:https://godoc.org/github.com/robfig/cron cron包的基础知识 字段名 是否必须 允许的值 ...