传送门


考虑如果我们当前可以询问\(x\)个数,还剩下\(q\)次询问机会,我们要怎么构造询问方式?

肯定会这么考虑:

找到一个尽可能大的\(P\)满足\([x,P]\)能在每一次能询问\(x\)个数、剩下\(q-1\)次询问机会的情况下被询问出来,然后在这一次询问\(P+1\);

接下来令\(x=P+2\),再去做这一个操作直到\(q\)次询问都被问完。

那么我们现在要求解这个\(P\),也就是要求每一次能询问\(x\)个数、剩下\(q-1\)次询问机会的情况下最长可以求解多长的区间;而我们当前的问题可以看做可以询问\(x\)个数,还剩下\(q\)次询问机会能够求解最长多长的区间,可以发现前者是后者的一个子问题,可以\(DP\)处理。

设\(dp_{x,q}\)表示当前可以询问\(x\)个数,还剩下\(q\)次询问机会时最长的能够处理的区间长度。那么我们的转移如下:

①\(r_0=x\)

②\(r_i = r_{i-1} + dp_{min\{r_i,10000\},q-1} + 1\)

③\(dp_{x,q}=r_{q+1}-r_0\)

其中\(dp_{i,0}=0\),因为没有询问显然啥都不知道

我们每一次需要询问的序列为\(r_i-1\)。

显然复杂度是\(O(5 \times 10^8)\)的,但我们只需要解决\(dp_{1,5}\),其中有很多冗余状态,实际上可以记忆化搜索解决。

然后考虑如何进行询问。

我们的初始的最长解决长度是\(dp_{1,5}\),初始的最小知道的值为\(cur=1\),询问次数为\(q=5\),那么我们按照下面这种方法进行交互:

①构造上面对应的询问序列,询问一次

②得到\(K\)

③如果\(K=-1\)直接退出,否则\(cur=r_K\),最长解决长度变为\(dp_{min(cur,10000),q-1}\)

④\(q--\),回到第\(1\)步

然后就做完了

思路的确比较火

还有\(dp_{1,5}\)就等于\(M\)到底是什么鬼啊喂

#include<bits/stdc++.h>
#define int long long
//This code is written by Itst
using namespace std;

const int MAXN = 10004205361450474ll;

int dp[10010][5];
vector < int > query;

int dfs(int l , int q){
    if(!q)
        return 0;
    if(l > 10000)
        l = 10000;
    if(dp[l][q])
        return dp[l][q];
    int r = l;
    for(int i = 1 ; i <= l ; ++i)
        r = r + dfs(r , q - 1) + 1;
    r = r + dfs(r , q - 1);
    return dp[l][q] = r - l;
}

void interact(){
    int cur = 1 , q = 5 , K;
    for(int i = 1 ; i <= 5 ; ++i){
        query.clear();
        query.push_back(cur - 1);
        int now = cur;
        for(int j = 1 ; j <= min(cur , 10000ll) ; ++j){
            now += dp[min(now , 10000ll)][q - 1];
            query.push_back(now);
            ++now;
        }
        cout << query.size() - 1 << ' ';
        for(int i = 1 ; i < query.size() ; ++i)
            cout << query[i] << ' ';
        cout << endl;
        cin >> K;
        if(K == -1)
            exit(0);
        cur = query[K] + 1;
        --q;
    }
}

signed main(){
    dfs(1 , 5);
    interact();
    return 0;
}

CF1028G Guess the Numbers 构造、记忆化搜索的更多相关文章

  1. 牛客国庆集训派对Day2 F、平衡二叉树 【构造+记忆化搜索】

    任意门:https://www.nowcoder.com/acm/contest/202/F 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 1048576K,其他语言2097152K6 ...

  2. hdu 5535 Cake 构造+记忆化搜索

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5355 题意:给定n与m,其中1<= n <= 1e5,2 <= m <= 10;问 ...

  3. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  4. 牛客假日团队赛5 F 随机数 BZOJ 1662: [Usaco2006 Nov]Round Numbers 圆环数 (dfs记忆化搜索的数位DP)

    链接:https://ac.nowcoder.com/acm/contest/984/F 来源:牛客网 随机数 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  5. cdoj Dividing Numbers 乱搞记忆化搜索

    //真tm是乱搞 但是(乱搞的)思想很重要 解:大概就是记忆化搜索,但是原数据范围太大,不可能记下所有的情况的答案,于是我们就在记下小范围内的答案,当dfs落入这个记忆范围后,就不进一步搜索,直接返回 ...

  6. HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  7. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  8. CodeForces 173C Spiral Maximum 记忆化搜索 滚动数组优化

    Spiral Maximum 题目连接: http://codeforces.com/problemset/problem/173/C Description Let's consider a k × ...

  9. hdu 1078 FatMouse and Cheese (dfs+记忆化搜索)

    pid=1078">FatMouse and Cheese Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/ ...

随机推荐

  1. python之数据类型

    1.整数(int)integer 直接写出数字就是整数例: a = 0#查看变量的数据类型 type() -> #<class 'int'> class类,类型,类别print(10 ...

  2. python *args,**kwargs用法

    *args用于接受传入的值,无限制,但是不能接收key类型的,如c=2 def fun(*args): for i in args: print(i) print("test") ...

  3. SuperMap iServer 扩展/JAVA API 系列博客整理

    转载:http://blog.csdn.net/supermapsupport/article/details/70158940 SuperMap iServer为广大用户提供了整套 SDK,应用开发 ...

  4. C#获取H5页面上传图片代码

    基于上一篇的H5压缩上传图片,由于图片是以二进制字符流blob的形式传过来的,所以应该想将其转成bytes类型再进行转换 public void ProcessRequest(HttpContext ...

  5. 洗礼灵魂,修炼python(40)--面向对象编程(10)—定制魔法方法+time模块

    定制魔法方法 1.什么是定制魔法方法 首先定制是什么意思呢?其实就是自定义了,根据我们想要的要求来自定义.而在python中,其实那些所谓的内置函数,内置方法,内置属性之类的其实也是自定义出来的,不过 ...

  6. Javascript 高级程序设计--总结【一】

    文档模式 混杂模式 标准模式 js 数据类型 Undefined Null  看做是一种空对象的引用 Boolean Number String Object typeof 返回类型 "un ...

  7. Linux下内存查看命令

    在Linux下面,我们常用top命令来查看系统进程,top也能显示系统内存.我们常用的Linux下查看内容的专用工具是free命令. Linux下内存查看命令free详解: 在Linux下查看内存我们 ...

  8. vuejs_01项目启动

    知识点 .npm 相关命令 npm list -g --depth= 查看全局安装了哪些依赖 项目启动 npm install vue-cli -g 安装vue脚手架 vue init webpack ...

  9. D - Milking Time 动态规划

    Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that sh ...

  10. __iter___和__next__方法

    __iter__方法变成一个迭代器类对象, 迭代器类要实现__next__方法