题目描述

给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大

输入

给出一个数字N,代表有N个点.N<=1000000 下面N-1条边.

输出

输出你所找到的点,如果具有多个解,请输出编号最小的那个.

样例输入

8
1 4
5 6
4 5
6 7
6 8
2 4
3 4

样例输出

7
 
  先求出以一个点为根的深度之和,再向子节点转移,每次转移到的子树中所有点深度-1,其他点深度+1.
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<vector>
using namespace std;
int head[2000010];
int next[4000010];
int to[4000010];
long long dep[2000010];
long long size[2000010];
long long ans[2000010];
int tot;
int n;
int x,y;
long long sum;
int num;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int fa)
{
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dep[to[i]]=dep[x]+1;
dfs(to[i],x);
size[x]+=size[to[i]];
}
}
}
void dfs2(int x,int fa)
{
ans[1]+=dep[x];
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs2(to[i],x);
}
}
}
void dfs3(int x,int fa)
{
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
ans[to[i]]=ans[x]-size[to[i]]+n-size[to[i]];
dfs3(to[i],x);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1;i<=n;i++)
{
size[i]=1;
}
dep[1]=0;
dfs(1,1);
dfs2(1,1);
dfs3(1,1);
sum=0;
for(int i=1;i<=n;i++)
{
if(sum<ans[i])
{
sum=ans[i];
num=i;
}
}
printf("%d",num);
}

BZOJ1131[POI2008]Sta——树形DP的更多相关文章

  1. 【bzoj1131】[POI2008]Sta 树形dp

    题目描述 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 输入 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. 输出 输出你所找到的点,如果具有 ...

  2. 【BZOJ-1131】Sta 树形DP

    1131: [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1150  Solved: 378[Submit][Status] ...

  3. [bzoj1131][POI2008]Sta_树形dp

    Sta bzoj-1131 POI-2008 题目大意:给定一棵n个点的树,求一个根,使得深度和最大. 注释:$1\le n \le 10^6$. 想法:扭一扭即可. 扭的时候看看这个点当没当过根. ...

  4. bzoj 1131 [POI2008]Sta 树形dp 转移根模板题

    [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1889  Solved: 729[Submit][Status][Discu ...

  5. BZOJ1131 POI2008 Sta 【树形DP】

    BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...

  6. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  7. [BZOJ1131][POI2008] Sta 树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  8. [BZOJ1131/POI2008]Sta树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  9. bzoj1131: [POI2008]Sta

    思路:首先先求出以1为根的答案,然后考虑由i转移到i的儿子的答案的变化,显然以son[i]为根的子树的所有结点的深度都会减一,其余的点的深度都会加一,然后就可以直接O(n)求出所有结点的答案,然后取m ...

随机推荐

  1. ASP.NET Core 释放 IDisposable 对象的四种方法

    本文翻译自<Four ways to dispose IDisposables in ASP.NET Core>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! IDispos ...

  2. 上传头像,layui上传图片

    layui上传与bootstrap上传相似,只是不需要下插件, layui自带的已够用 先看一下前台界面,这里是用到的上传头像 先点击开始上传,头像上传至服务器中, 返回json添加至form表单中, ...

  3. Kafka:Configured broker.id 2 doesn't match stored broker.id 0 in meta.properties.

    在安装Kafka集群的时候,碰到这个问题. 我们知道在搭建Kafka集群的时候,我们需要设置broker.id,以作为当前服务器在整个集群的唯一标志. 网上搜查资料是说,log.dirs目录下的met ...

  4. ASP.NET Core 2.1 源码学习之 Options[2]:IOptions

    在 上一章 中,介绍了Options的注册,而在使用时只需要注入 IOption<T> 即可: public ValuesController(IOptions<MyOptions& ...

  5. IO复用\阻塞IO\非阻塞IO\同步IO\异步IO

    转载:IO复用\阻塞IO\非阻塞IO\同步IO\异步IO 一. 什么是IO复用? 它是内核提供的一种同时监控多个文件描述符状态改变的一种能力:例如当进程需要操作多个IO相关描述符时(例如服务器程序要同 ...

  6. 懒人小工具:T4生成实体类Model,Insert,Select,Delete以及导出Excel的方法

    由于最近公司在用webform开发ERP,用到大量重复机械的代码,之前写了篇文章,懒人小工具:自动生成Model,Insert,Select,Delete以及导出Excel的方法,但是有人觉得这种方法 ...

  7. Matlab入门笔记(1)

    1.简单练习题: cos(((1+2+3+4+5)^3/5)^0.5) sin(pi^0.5)+log(tan(1)) 2^(3.5*1.7) exp(sin(10)) 2.实数,复数,行向量,列向量 ...

  8. PHP 设置调试工具XDebug PHPStorm IDE

    先下载PHP扩展Xdebug https://xdebug.org, 可以复制自己的phpinfo粘贴到https://xdebug.org/wizard.php中, 会生成需要下载的版本, php. ...

  9. 如何在css中设置按钮button中包含图片文字对齐方式

    <el-button class="class-management style="line-heught">班级管理

  10. Liinux 学习心得

    Linux 内核学习心得 姬梦馨 原创作品 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 反汇编一个简 ...