一、Series

  类似于一位数组的对象,第一个参数为数据,第二个参数为索引(索引可以不指定,就默认用隐式索引)

Series(data=np.random.randint(1,50,(10,)))
Series(data=[1,2,3],index=('a','b','c'))
dic={'math':88,'chinese':99,'english':50}
Series(data=dic)
对于data来说,可以是列表、np数组、字典,当用字典时,字典的key会成为行索引

  1,索引和切片

用中括号时,可以是显示索引,也可以是隐式索引
用句点符‘.’
用.loc[]时,只能有显示索引
用.iloc[]时,只能用隐式索引

  2,属性

  3,去重

  4,加法

  索引相同的加在一起,当索引不一致的项,就用NaN填充

  5,数据清洗

  主要用isnull()判断值是否为空,notnull()判断值是否不为空,返回的都是值为bool型的Series,然后把它作为索引,就可以把为False的值给删除。

  二、DataFrame

  DataFrame是一个表格型的数据结构,DataFrame由一定顺序排列的多列数据组成,设计初衷是将Series的使用场景从一维拓展到多维,DataFrame既有行索引index,也有列索引columns,值values。

  1,DataFrame的创建

  最常用的方法是传递一个字典,以字典的key为列索引,以每一个key对应的值作为对应列的数据,所以值应该是个列表。还可以指定行索引,但不可以指定列索引。

  2,索引和切片

  2.1 列索引

  2.2 行索引

  2.3 元素索引

  2.4 切片

  3,运算

  要保证行索引和列索引都一致才能运算,否则用NaN填充

  4,数据清洗

  4.1 用isnull(),notnull(),any(),all()搭配使用,得到一组bool值的Series,然后把它作为索引,就可以清洗为False的行

  4.2 还可以用drop(),drop系列的函数中,axis=1表示列,axis=0代表行,这和其他所有场景都是相反的

  4.3 上面两种清洗方法都是删除整行或者,整列,有时是不允许这样子删除。我也可以用fillna()来把空值给填上。当inplace参数设为Ture时,表示修改后的数据映射到原数据,相当于修改原数据。

  5,多层索引

  5.1 隐式构造,最常用的方法是给DataFrame构造函数的index或columns传递两个或多个数组。

  5.2 显式构造,用pd.MultiIndex.from_product

  5.3 索引和切片

  6,级联

pandas使用pd.concat(),与np.concatedate()类似,参数有些不同。
参数join:'outer'将所有的项进行级联(忽略匹配和不匹配),'inner'只会把匹配的项进行级联。

  由于在以后的级联的使用很多,因此有一个函数append专门用于在后面添加。

  7,合并

合并用merge().它和数据库中的链表差不多
merge和concat的区别在于,merge需要依据某一共同的列进行合并。
在使用merge时,会自动根据两者相同的columns,来合并
每一列元素不要求一致
参数:
how:out取并集,inner取交集
on:当两者有多列的名字相同时,我们想指定某一列进行合并,那我们就要把想指定列的名字赋给它
left_on和right_on:同时使用,当两者间没有共同的列名称时,可以分别指定

  8,删除重复元素

  使用duplicated()函数检测重复的行,返回元素为bool类型的Series对象,keep参数:指定保留哪一行重复的元素

  还可以使用drop_duplicates(),这也是drop系列函数。

  9 ,替换replace()

df.replace(to_replace=6,value='ww')   #把所有的6换成‘ww’
df.replace(to_replace={2:6},value='ww') #把列索引为‘2’这列中‘6’换成‘ww’
df.replace(to_replace={2:6,3:9},value='ww')#把列索引为2中的6和列索引为3中的9换成‘ww’
df.replace(to_replace={6:'ww'}) #把所有的6换成‘ww’
df.replace(to_replace={6:'ww',1:'qq'}) #把所有的6换成‘ww’,把所有的1换成‘qq’

  10,映射

  10.1 用map()新建一列

  10.2 map()中还可以跟自定义函数

  11,排序

  使用take()函数排序,take接受一个索引列表,用数字表示,使得df会根据列表中索引的顺序进行排序

  还可以使用np.random.permutation()函数随机排序,它返回的是一个一维的随机数组,比如参数为10,就会产生0到9这10个数字,不重复的,顺序还是打乱的。

  当DataFrame规模足够大时,我们就可以借助它帮我们把数据打乱,然后用take函数实现随机抽样

values = df.take(np.random.permutation(1000),axis=0).take(np.random.permutation(3),axis=1).values
上面的代码是把1000行随机打乱,然后3列随机打乱
DataFrame(data=values)这就会映射会原数据,此时的原数据就是行和列都打乱的数据

  12,分类

  分类就是把数据分为几个组,然后我可以对每个组进行操作,这和数据库分类是一样的效果。使用的是groupby()函数,参数by是分类的依据,groups属性可以查看分组情况

  13,高级聚合

  在分组后可以用sum(),mean()等聚合函数,其次还可以跟transform和apply函数,再给这两个函数传一个自定义函数,就可以是聚合函数以外的功能。

数据分析之pandas模块的更多相关文章

  1. 【Python 数据分析】pandas模块

    上一节,我们已经安装了numpy,基于numpy,我们继续来看下pandas pandas用于做数据分析与数据挖掘 pandas安装 使用命令 pip install pandas 出现上图表示安装成 ...

  2. 关于Python pandas模块输出每行中间省略号问题

    关于Python数据分析中pandas模块在输出的时候,每行的中间会有省略号出现,和行与行中间的省略号....问题,其他的站点(百度)中的大部分都是瞎写,根本就是复制黏贴以前的版本,你要想知道其他问题 ...

  3. Pandas模块:表计算与数据分析

    目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...

  4. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  5. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  6. Python 数据处理扩展包: numpy 和 pandas 模块介绍

    一.numpy模块 NumPy(Numeric Python)模块是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list str ...

  7. Pandas模块

    前言: 最近公司有数据分析的任务,如果使用Python做数据分析,那么对Pandas模块的学习是必不可少的: 本篇文章基于Pandas 0.20.0版本 话不多说社会你根哥!开干! pip insta ...

  8. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  9. 4 pandas模块,Series类

      对gtx图像进行操作,使用numpy知识 如果让gtx这张图片在竖直方向上进行颠倒.   如果让gtx这张图片左右颠倒呢?   如果水平和竖直方向都要颠倒呢?   如果需要将gtx的颜色改变一下呢 ...

随机推荐

  1. AX_UserInfo

    UserInfoHelp::userInUserGroup(curuserid(), "Admin")  EmplTable::userId2EmplId(curuserid()) ...

  2. centos 7下 django 1.11 + nginx 1.12 + uwsgi 2.0

    之前写过一个博客关于如何安装django的,见下网址, http://www.cnblogs.com/qinhan/p/8732626.html 还有一个网址如何安装nginx的 http://www ...

  3. 说说Runnable与Callable

    Callable接口: public interface Callable<V> { V call() throws Exception; } Runnable接口: public int ...

  4. Android Studio中的大量findViewById

    一. 分析 在Android Studio中开发时,findViewById是用的最多的函数之一.经常需要对返回的view进行类型转换,输入麻烦.代码丑陋. 本文提供两种方案来解决这个问题: 1.安装 ...

  5. Vuejs——(3)计算属性,样式和类绑定

    版权声明:出处http://blog.csdn.net/qq20004604   目录(?)[+]   先上总结: (十九)标签和API总结(2) vm指new Vue获取的实例 ①当dom标签里的值 ...

  6. RxSwift学习笔记7:buffer/window/map/flatMap/flatMapLatest/flatMapFirst/concatMap/scan/groupBy

    1.buffer的基本使用 let publishSubject = PublishSubject<String>() //buffer 方法作用是缓冲组合,第一个参数是缓冲时间,第二个参 ...

  7. 背水一战 Windows 10 (82) - 用户和账号: 获取用户的信息, 获取用户的同意

    [源码下载] 背水一战 Windows 10 (82) - 用户和账号: 获取用户的信息, 获取用户的同意 作者:webabcd 介绍背水一战 Windows 10 之 用户和账号 获取用户的信息 获 ...

  8. code128 C语言实现

    https://blog.csdn.net/walk_ing/article/details/52712641 参考链接 1,具有A.B.C三种不同的编码类型,可提供标准ASCII中128个字元(字元 ...

  9. windows中的常用Dos命令

    # __切换盘符目录__ E/D: # 从C盘切换到E盘或者D盘# __切换到指定文件夹下__cd folder_name(指定文件夹名--相对/绝对路径)cd .. # 返回上一级目录cd / # ...

  10. Xamarin.Android SharedPreferences的使用方法

    SharedPreferences的本质是基于XML文件存储key-value键值对数据,通常用来存储一些简单的配置信息.其存储位置在/data/data/<包名>/shared_pref ...