\(\rm{0x01\quad Preface}\)

\(emmm\)严格来讲,不应该被算到一个模板里面。因为在我看来模板是人构造出来的,但是这个算法应该是一个解决问题的\(process\)…更像是在解一道数学题,如果\(BSGS\)是定理的话,\(exBSGS\)更像是一个不断转化的过程233(手动@lxa并且溜

\(\rm{0x02\quad Algorithm~Process}\)

今天才发现原来\(\rm{BSGS}\)有两种写法……并且觉得剩下的题解讲的都讲的不是很全的样子233。

其实本质上,当\(p\)不为素数时,我们无法进行朴素\(\rm{BSGS}\)的原因是我们的欧拉定理\(a^{\varphi(p)} \equiv b(\bmod p)\) 只能处理\((a,p)=1\)的情况。那么我们知道,朴素的\(\rm{BSGS}\)的关键在于,可以保证最小解是有界的——\(x\)一定在\([1,\varphi(p)]\)中。所以最后\(BSGS\)的复杂度才会是\(\Theta(\sqrt{\varphi(p)})\) 的——比如说比较常见的\(p\)是素数的情况下,时间复杂度为\(\Theta(p)\)。

那么也就是说,我们只需要进行一些操作,保证$(a,p)=1 \(即可\)^{[1]}$。

我们思考,对于同余式\(a^x\equiv b~(\bmod p)​\)而言,我们先假定\((a,p)>1 ​\)。而此时如果有\(((a,p), b)=1​\),那么说明此式只有可能在\(x=0,b=1 ​\)的时候有解——这个结论是平凡的。因为假设我们把它展开成\(a\cdot a^{x-1} +kp=b ​\)的形式,必须要有\((a,p) ~|~ b​\)的情况下,才能保证\(a^{x-1}​\)和\(k ​\)都是整数。

那么对于\((a,p)>1\)且$(a,p)|b $,我们令原式变成

\[a^{x-1}\cdot \frac{a}{(a,p)} \equiv \frac{b}{(a,p)} (\bmod \frac{p}{(a,p)})
\]

的样子,如果此时\((a^{x-1},\frac{p}{(a,p)})=1\) 的话,我们就直接解

\[a^{x-1}\equiv \frac{\frac{b}{(a,p)}} {\frac{a}{(a,p)} }(\bmod \frac{p}{(a,p)})
\]

这个方程即可。否则我们继续分解直至\((p',a)=1\)。

那么此时有个问题需要注意,就是如果们在解这个方程时,出现了

\[(a^{x-1}, \frac{p}{(a,p)})\nmid \frac{\frac{b}{(a,p)}} {\frac{a}{(a,p)} }
\]

的情况,那我们需要特判并return -1 ;另一种情况,如果我们出现了

\[a^{x-1}\equiv \frac{\frac{b}{(a,p)}} {\frac{a}{(a,p)} } \equiv1(\bmod \frac{p}{(a,p)})
\]

的情况,也需要特判并输出此\(k\)(此时同余式左边是\(a^{x-k}\),因为\(a^{x-k}\equiv1~(\bmod p)\)所以直接输出\(k\)),不过也有可能不需要,完全看你写的\(BSGS\)能不能判断\(x=0\)的情况……一般情况下不能。

此时由于\(\boldsymbol{p}\)不再是素数,所以不能用费马小定理,需要我们用\(exgcd\)的方法求逆元,包括但不限于\(\frac{b}{(a,p)}\)的逆元和\(a^{-im}\)。

以下是完整版代码:


#include <map>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <unordered_map> #define ll long long using namespace std ;
unordered_map<ll, int> H ;
int N, M, P, ans ; // N ^x = M (mod P) inline ll gcd(ll a, ll b){
if (!b) return a ;
return gcd(b, a % b) ;
}
inline ll expow(ll a, ll b, ll mod){
ll res = 1 ;
while (b) res = ((b & 1)?res * a % mod : res), a = a * a % mod, b >>= 1 ;
return res ;
}
inline ll exgcd(ll &x, ll &y, ll a, ll b){
if (!b){ x = 1, y = 0 ; return a ; }
ll t = exgcd(y, x, b, a % b) ; y -= x * (a / b) ; return t ;
}
inline ll BSGS(ll a, ll b, ll mod, ll qaq){
H.clear() ; ll Q, p = ceil(sqrt(mod)), x, y ;
exgcd(x, y, qaq, mod), b = (b * x % mod + mod) % mod,
Q = expow(a, p, mod), exgcd(x, y, Q, mod), Q = (x % mod + mod) % mod ;
for (ll i = 1, j = 0 ; j <= p ; ++ j, i = i * a % mod) if (!H.count(i)) H[i] = j ;
for (ll i = b, j = 0 ; j <= p ; ++ j, i = i * Q % mod) if (H[i]) return j * p + H[i] ; return -1 ;
}
inline ll exBSGS(){
ll qaq = 1 ;
ll k = 0, qwq = 1 ;
if (M == 1) return 0 ;
while ((qwq = gcd(N, P)) > 1){
if (M % qwq) return -1 ;
++ k, M /= qwq, P /= qwq, qaq = qaq * (N / qwq) % P ;
if (qaq == M) return k ;
}
return (qwq = BSGS(N, M, P, qaq)) == -1 ? -1 : qwq + k ;
}
int main(){
while(cin >> N){
scanf("%d%d", &P, &M); if (!N && !M && !P) return 0 ;
N %= P, M %= P, ans = exBSGS() ; if (ans < 0) puts("No Solution") ; else cout << ans << '\n' ;
}
}

\(\rm{0x03\quad Afterword}\)

今天才知道原来\(BSGS\)有两种写法qaq

\(zyf2000\)好像和我写的\(BSGS\)对“大步”和“小步”的定义不是很一样…于是最后还是自己\(\rm{yy}\)的233

\(\rm{Reference}\)

exBSGS·BSGS-Senior/扩展的BSGS的更多相关文章

  1. BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

    BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...

  2. BSGS及扩展BSGS总结(BSGS,map)

    蒟蒻哪里有什么总结,只能点击%YL% 还有这位ZigZagK大佬的blog \(\mbox{BSGS}\) 模板题:洛谷P3846 [TJOI2007]可爱的质数 给定\(a,b\)和模数\(\mbo ...

  3. BSGS及其扩展

    目录 定义 原理 朴素算法 数论分块 例题 Luogu2485 [SDOI2011]计算器 题解 代码 扩展 例题 Luogu4195 [模板]exBSGS/Spoj3105 Mod 代码 之前写了一 ...

  4. BSGS与扩展BSGS

    BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...

  5. BSGS和扩展BSGS

    BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map ...

  6. BSGS 和扩展

    BSGS BSGS,全称叫 BabyStepGiantStep,也就是大步小步 其实还是比较暴力的 它可以\(O(\sqrt p)\)的复杂度内解出: \[a^x\equiv n\pmod p,\gc ...

  7. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  8. BSGS及扩展BSGS算法及例题

    \(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其 ...

  9. Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

    哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i ...

随机推荐

  1. 如何把SVG小图片转换为 html字体图表

    自制作的简单字体图表使用案例:查看demo 制作步骤: 1:登录制作工具在线网站 https://icomoon.io/ 2:右上角红色 按钮进入到:https://icomoon.io/app/#/ ...

  2. HTML-CSS写抽屉网的置顶区域

    1.在pycharm的已有工程中新建一个html文件. 2.在<body></body>标签内部写入要内容: <div class='head-box' > < ...

  3. 让 Odoo POS 支持廉价小票打印机

    为了测试 Odoo 在实际业务中的实施,我们开了一家(马上要开第二家分店)猪肉店.由于预算有限,在实施 Odoo PoS 的时候采购了一台价格为 85 元的爱宝热敏打印机,结果连上 Odoo Posb ...

  4. TFS 安装遇到的问题

    居然是是微信桌面客户端占用了8080端口,也是醉了... 1 VS链接 源码管理器 发现提示 Http 404, 发现原来是自己吧tfs 给删除了 2 重新安装tfs,过程中提示 8080 端口被占用 ...

  5. Python自动化开发之python的常用模块

    python常用模块 模块的种类:模块分为三种,分别是自定义模块:内置标准模块(即标准库):开源模块(第三方). 以下主要研究标准模块即标准库:标准库直接导入即可,不需要安装. 时间模块:time , ...

  6. 安卓开发ScrollView嵌套ListView只显示一行

    在用列表控件做一个“更多功能”的界面的时候 <?xml version="1.0" encoding="utf-8"?> <ScrollVie ...

  7. Android系统启动流程(一)解析init进程启动过程

    整体流程大致如下:     1.init简介 init进程是Android系统中用户空间的第一个进程,作为第一个进程,它被赋予了很多极其重要的工作职责,比如创建zygote(孵化器)和属性服务等.in ...

  8. springboot 升级到2.0后 context-path 配置 不起作用,不生效 不管用 皆是因为版本改动导致的在这里记录一下

    不知不觉,新的项目已经将springboot升级为2.0版本了.刚开始没有配置server.contextpath,默认的“/”,然后今天放到自己的服务器上,所以就要规范名称.  结果,失败了,无论我 ...

  9. 故障小记录:yum 安装报错File "/usr/bin/yum", line 30 except KeyboardInterrupt, e:

    发生原因: 由于yum是基于python的,之前安装我python3,当我修改了python命令的指向到python3之后就会发生这样的问题. 解决办法: 由于我当初想到可能以后还需要python2, ...

  10. 使用katalon自带Spy功能获取/验证控件Selector、XPath

    背景 最近刚接手一个katalon编写的UI自动化项目,页面最近刚改版,已有用例很多查找元素失败.了解到katalon元素定位支持xpath,所以直接使用chrome开发者工具打开目标页面+获取xpa ...