【BZOJ1856】[SCOI2010]字符串(组合数学)
【BZOJ1856】[SCOI2010]字符串(组合数学)
题面
题解
把放一个\(1\)看做在平面直角坐标系上沿着\(x\)正半轴走一步,放一个\(0\)看做往\(y\)轴正半轴走一步,最终的重点就是\((n,m)\),限制就是不能到达\(y=x\)上面的部分。
发现这样不好算,我们先考虑一个另外的情况,即\(y=x\)这个部分也不能到达。
首先发现如果第一步走到了\((0,1)\),那么方案一定都不合法。
只考虑第一步走到了\((1,0)\)的情况,那么总的方案数就是\(C(n+m-1,n-1)\)
然而有触碰到了\(y=x\)的情况,我们考虑这条路径第一次碰到\(y=x\)的时候,然后把前面的所有路径沿着\(y=x\)翻转,这样子不难发现所有不合法的情况都一一对应到了从\((0,1)\)出发的情况。
所以在\(y=x\)不能接触的情况下,方案数是\(C(n+m-1,n-1)-C(n+m-1,m-1)\)
现在考虑可以接触\(y=x\),简单啊,我们强制你多往右走一步,变成不能接触\(y=x\)就好了啊。
即\(n\)变成\(n+1\),那么答案就是\(C(n+m,n)-C(n+m,m-1)\)
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 20100403
#define MAX 1001000
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,m;
int C(int n,int m)
{
int s=1,d=1;
for(int i=n;i>m;--i)s=1ll*s*i%MOD;
for(int i=n-m;i;--i)d=1ll*d*i%MOD;
return 1ll*s*fpow(d,MOD-2)%MOD;
}
int main()
{
cin>>n>>m;
cout<<(C(n+m,m)+MOD-C(n+m,m-1))%MOD<<endl;
return 0;
}
【BZOJ1856】[SCOI2010]字符串(组合数学)的更多相关文章
- BZOJ1856[Scoi2010]字符串——组合数学+容斥
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
- [BZOJ1856][SCOI2010]字符串(组合数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1856 分析:http://www.cnblogs.com/jianglangcaiji ...
- 2018.09.25 bzoj1856: [Scoi2010]字符串(组合数学)
传送门 如果有n==m的条件就是卡特兰数. 但现在n不一定等于m. 我们可以考虑用求卡特兰数一样的方法来求答案. 我们知道有一种求卡特兰数的方法是转到二维平面求答案. 这道题就可以这样做. 我们将这个 ...
- BZOJ1856 [Scoi2010]字符串 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8084577.html 题目传送门 - BZOJ1856 题意概括 找出由n个1,m个0组成的字符串,且任意前几个 ...
- BZOJ1856[SCOI2010]字符串
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
- bzoj千题计划299:bzoj1856: [Scoi2010]字符串
http://www.lydsy.com/JudgeOnline/problem.php?id=1856 卡特兰数 从(1,1)走到(n,m),不能走y=x 上方的点,求方案数 从(1,1)走到(n, ...
- BZOJ1856: [Scoi2010]字符串(组合数)
题意 题目链接 Sol \(30 \%\)dp: \(f[i][j]\)表示放了\(i\)个\(1\)和\(j\)个\(0\)的不合法方案 f[0][0] = 1; cin >> N &g ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
随机推荐
- Winio驱动在64位windows下无法使用的解决方法
C#在使用WinIo的驱动开发类似按键精灵一类工具的时候,需要对相关的驱动进行注册才能正常启动,找了下资料,资料来自: http://jingyan.baidu.com/article/642c9d3 ...
- 阿里云telnet 3306端口失败
在阿里云的服务器上安装了MySQL, 然后远程访问总是不通. 查询了很久,排查思路如下: 检查mysql是否启动 检查本机3306端口是否处于监听状态 检查阿里云控制台是否开启了安全限制 检查mysq ...
- Jlink使用技巧之合并烧写文件
前言 IAP(In-application-programming),即在应用中编程.当产品发布之后,可以通过网络方便的升级固件程序,而不需要拆机下载程序.IAP系统的固件一般由两部分组成,即Boot ...
- HBase最佳实践-管好你的操作系统
本文由 网易云发布. 作者:范欣欣 本篇文章仅限本站分享,如需转载,请联系网易获取授权. 操作系统这个话题其实很早就想拿出来和大家分享,拖到现在一方面是因为对其中各种理论理解并不十分透彻,怕讲不好: ...
- Nginx挂载维护页或返回自定义响应信息
在服务停机升级或者服务暂不可用时,往往希望能够返回给用户更为明确和友好的响应信息.可以通过修改nginx配置文件,达到返回自定义信息的效果.有如下几种配置方式: (1)Nginx接收到的所有请求,都返 ...
- FreeCAD源码初步了解
FreeCAD简介 FreeCAD是基于OpenCASCADE的开源CAD/CAE软件,完全开源(GPL的LGPL许可证),官方源码地址,详情可参考维基百科,百度百科等等. 如果要编译FreeCAD, ...
- 个人博客作业_week14
M1/M2阶段总结 我在M1阶段负责后端代码的开发,以及协助PM,在M2阶段负责PM,在为期将近一学期的团队软件开发过程中,我深刻体会到了团队协作的重要性,以及合理分配任务的重要性,没有一个好的时间规 ...
- weex 开发踩坑日记--环境配置、安卓运行、adb、开发
环境配置方面 1.需要安装java和android环境,java的话一定要下载jdk而不是jre. 在"系统变量"新建一个变量名为JAVA_HOME的变量,变量值为你本地java的 ...
- Java的Vector源码阅读
* The {@code Vector} class implements a growable array of * objects. Like an array, it contains comp ...
- [CB]IPv6 在中国 - 大规模部署进行中 进展明显
IPv6 在中国 - 大规模部署进行中 进展明显 2019年02月04日 08:21 3078 次阅读 稿源:solidot 0 条评论 中国有着世界上最大的网民人口,但它的 IPv6 普及度却处于世 ...