读吴恩达算-EM算法笔记
最近感觉对EM算法有一点遗忘,在表述的时候,还是有一点说不清,于是重新去看了这篇<CS229 Lecture notes>笔记. 于是有了这篇小札.
关于Jensen's inequality不等式:
Corollary(推论):
如果函数f(x)为凸函数,那么在 f(x) 上任意两点X1,X2所作割线一定在这两点间的函数图象的上方,即:
其中t表示【x1,x2】的位置
举例子: 当t=1/2 ; 1/2*f(x1) + 1/2*f(x2) >= f( 1/2*x1 + 1/2*x2 );
或者我们直接抽象的表示为: E[f(X)] ≥ f(EX) ,其中E表示期望.
那么这个 Jensen's inequality(Jensen's 不等式在EM算法中起到什么作用呢?)这里我们先不表.
关于极大似然评估(MLE):
假定存在一个样本集 D= {x1,x2,...,Xm },为M个独立分布的样本. 假设似然函数为: 联合概率密度函数P(D ; θ) ,其中(P(D ; θ)这种表示相当于P(D),只是存在未知参数θ)
我们知道了似然函数之后,将样本数据展开:
P(D ; θ) = p(x1,x2,...,Xm;θ) = ∏mi=1 p(xi ; θ)
我们令 L( Z ) = ∏mi=1 p(xi ; θ) ,如果存在θi 使得 L(θ)最大,我们认为θi为θ的极大似然估计量,同时我们认为θi(x1,x2,...,xm)为样本集D的极大似然函数估计量
关于求解极大似然函数:
求使得出现该组样本的概率最大的θ值。
θi = argmax(L(θ)) = argmax( ∏mi=1 p(xi ; θ) );
继续回到上面的公式:
L( θ ) = ∏mi=1 p(xi ; θ); 要使得L(θ)最大,那么对这个公式进一步化解:
等价于: log( L(θ) ) = log( ∏mi=1 p(xi ; θ) ) = ∑m i=1 P(xi ;θ)
(∑m i=1 P(xi ;θ))' = d( ∑m i=1 P(xi ;θ) ) / d(θ) =0 ; 求导 得 θ的解
关于极大似然求解的步骤:
(1)写出似然函数;
(2)对似然函数取对数,并整理;
(3)求导数;
(4)解似然方程。
我们先来看文章给出的这样一个问题:
比如我们有一个训练集合X={ x1 , x2 , .... , Xm};里面包含M个样本. 我们希望将模型p(x,z)的参数与训练集合数据进行拟合,其中的函数-对数似然是:
我们想上面求解极大似然函数一样来求解这个似然函数:
对它进行微分方程,求导 d( L(θ) ) / d( θ ) =0; ? 我们很快就发现无法求解,因为存在新的未知变量Z(隐变量);如何来解释这个隐变量Z呢?
比如这样一个例子:
比如有A,B两个人比赛随机打靶,每个人每次打4枪,当命中九环以内,包括九环,是记录为1,否则记录为0; 但是由于裁判熬夜玩游戏,比赛完成是,收集比赛结果时,搞混了靶纸。于是整理出如下结果:
人名 | 结果 |
未知 | 1011 |
未知 | 0011 |
未知 | 1101 |
未知 | 0101 |
未知 | 1011 |
未知 | 0010 |
未知 | 1111 |
未知 | 1011 |
问A命中九环的概率pa,B命中九环的概率pb?
而这里的隐变量Z就是人名的顺序。
面对这个问题,显然使用极大似然函数去正面扛困难重重,EM算法为这个问题,提供了一个很好的思路:
求解分两步走:
E step 期望阶段:
先假定,即初始化A,B命中的概率pa0=0.2 , pb0=0.5;
求出8次打靶中,该次打靶的结果是A,B的可能性即概率:
第一次打靶:如果是A的打靶结果: 0.2*0.8*0.2*0.2=0.0064
如果是B的打靶结果: 0.5^4 =0.0625
第i次打靶 | A | B |
1 | 0.0064 | 0.0625 |
2 | 0.0256 | 0.0625 |
3 | 0.0064 | 0.0625 |
4 | 0.0256 | 0.0625 |
5 | 0.0064 | 0.0625 |
6 | 0.1024 | 0.0625 |
7 | 0.0016 | 0.0625 |
8 | 0.0064 | 0.0625 |
如此,我们依据极大似然函数,来确定每一轮是谁打的
1轮: P(A1)<P(B1),
由上面这个表,我们在假定的前提下,计算出了A或者B的出现每轮打靶结果的概率;我们可以依据这个结果,进一步计算第i次是A,B打靶的相对概率
求出8次打靶中,该次打靶的结果是A,B的相对可能性即概率:
第一次打靶:如果是A的打靶结果: 0.0064/(0.0064 + 0.0625) =0.0928
如果是B的打靶结果: 0.0625/(0.0064 + 0.0625) =0.9072
第i次打靶 | A | B |
1 | 0.0928 | 0.9072 |
2 | 0.290 | 0.710 |
3 | 0.0928 | 0.9072 |
4 | 0.290 | 0.710 |
5 | 0.0928 | 0.9072 |
6 | 0.620 | 0.380 |
7 | 0.0249 | 0.9751 |
8 | 0.0928 | 0.9072 |
我们先假定A,B命中的概率pa1,pb1,然后去推到它们比赛的顺序,再依据比赛的顺序,来计算A,B命中的概率Pa2,pb2. 当pa2,pb2和pa1,pb2结果相差时较大时,
将pa2,pb2代入,继续推到它们的比赛顺序,计算A,B命中的概率
读吴恩达算-EM算法笔记的更多相关文章
- 吴恩达(Andrew Ng)——机器学习笔记1
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https:/ ...
- 吴恩达机器学习CS229课程笔记学习
监督学习(supervised learning) 假设我们有一个数据集(dataset),给出居住面积和房价的关系如下: 我们以居住面积为横坐标,房价为纵坐标,组成数据点,如(2104, 400), ...
- Coursera 吴恩达 深度学习 学习笔记
神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...
- 吴恩达Machine Learning学习笔记(四)--BP神经网络
解决复杂非线性问题 BP神经网络 模型表示 theta->weights sigmoid->activation function input_layer->hidden_layer ...
- 吴恩达Machine Learning学习笔记(一)
机器学习的定义 A computer program is said to learn from experience E with respect to some class of tasks T ...
- 吴恩达Machine Learning学习笔记(三)--逻辑回归+正则化
分类任务 原始方法:通过将线性回归的输出映射到0-1,设定阈值来实现分类任务 改进方法:原始方法的效果在实际应用中表现不好,因为分类任务通常不是线性函数,因此提出了逻辑回归 逻辑回归 假设表示--引入 ...
- 吴恩达Machine Learning学习笔记(二)--多变量线性回归
回归任务 多变量线性回归 公式 h为假设,theta为模型参数(代表了特征的权重),x为特征的值 参数更新 梯度下降算法 影响梯度下降算法的因素 (1)加速梯度下降:通过让每一个输入值大致在相同的范围 ...
- 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程
上一篇 ※※※※※※※※ [回到目录] ※※※※※※※※ 下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...
- 笔记:《机器学习训练秘籍》——吴恩达deeplearningai微信公众号推送文章
说明 该文为笔者在微信公众号:吴恩达deeplearningai 所推送<机器学习训练秘籍>系列文章的学习笔记,公众号二维码如下,1到15课课程链接点这里 该系列文章主要是吴恩达先生在机器 ...
随机推荐
- waf python build 工具使用流程
waf python build 工具使用流程 waf 的 build 理念 build 了之后,可以跟踪到 ${SRC} 和 ${TGT} 有关联的文件,只有 ${SRC} 被修改过,在下次buil ...
- Mybatis下collections使用pageHelper进行分页
pageHelper在对mybatis一对多分页时造成查询总页数结果不对的情况. 可以做出如下修改: service层: public CommonResult worksList(String us ...
- 【python】TCP/IP编程
No1: [TCP] 客户端 import socket s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect(('www.sina ...
- HDU 4635 Strongly connected (强连通分量+缩点)
<题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...
- Python并发复习3 - 多进程模块 multiprocessing
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好用的多进程包multiprocessing,只需要定 ...
- spring_AOP_annotation
例子下载 beans.xml 首先,在配置文件配置好下面的配置 <?xml version="1.0" encoding="UTF-8"?> < ...
- Win userAccountControl 基本属性
userAccountControl 基本属性 属性标志 十六进制 十进制 说明 SCRIPT 0x0001 1 运行登录脚本 ACCOUNTDISABLE 0x0002 2 账户禁用 HOMEDIR ...
- XamarinAndroid组件教程RecylerView适配器动画动画种类
XamarinAndroid组件教程RecylerView适配器动画动画种类 本节将讲解RecylerView适配器动画,其中包含动画种类和如何使用动画. 动画种类 RecylerViewAnimat ...
- BZOJ.3926.[ZJOI2015]诸神眷顾的幻想乡(广义后缀自动机)
题目链接 要对多个串同时建立SAM,有两种方法: 1.将所有串拼起来,中间用分隔符隔开,插入字符正常插入即可. 2.在这些串的Trie上建SAM.实际上并不需要建Trie,还是只需要正常插入(因为本来 ...
- STM新建项目
STM新建项目,为以后开发提供更好的平台,项目代码分级分类管理,便于查看. 1.新建一个文件夹,在里面分别新建固件库.内核.用户文件夹. 在网上下载STM32F10x_StdPeriph_Lib_V3 ...