一、相同点

 第一,LR和SVM都是分类算法(SVM也可以用与回归)

 第二,如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的。

  这里要先说明一点,那就是LR也是可以用核函数的。总之,原始的LR和SVM都是线性分类器,这也是为什么通常没人问你决策树和LR什么区别,你说一个非线性分类器和一个线性分类器有什么区别?

 第三,LR和SVM都是监督学习算法。

 第四,LR和SVM都是判别模型。

  这里简单讲解一下判别模型和生成模型的差别:

  判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有线性回归模型、线性判别分析、支持向量机SVM、神经网络、boosting、条件随机场等。

   举例:要确定一个羊是山羊还是绵羊,用判别模型的方法是从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。

  生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x),然后选取使得p(yi|x)最大的yi,即:

  

    常见的生成式模型有 隐马尔可夫模型HMM、朴素贝叶斯模型、高斯混合模型GMM、LDA、高斯、混合多项式、专家的混合物、马尔可夫的随机场

    举例:利用生成模型是根据山羊的特征首先学习出一个山羊的模型,然后根据绵羊的特征学习出一个绵羊的模型,然后从这只羊中提取特征,放到山羊模型中看概率是多少,在放到绵羊模型中看概率是多少,哪个大就是哪个。

  

  考虑这样一个例子,假设给定动物的若干个特征属性,我们希望通过这些特征学习给定的一个“个体”到底是属于“大象”(y=1)还是“狗”(y=0)

  如果采用判别模型的思路,如逻辑回归,我们会根据训练样本数据学习类别分界面,然后对于给定的新样本数据,我们会判断数据落在分界面的哪一侧从而来判断数据究竟是属于“大象”还是属于“狗”。在这个过程中,我们并不会关心,究竟“大象”这个群体有什么特征,“狗”这个群体究竟有什么特征。
  现在我们来换一种思路,我们首先观察“大象”群体,我们可以根据“大象”群体特征建立模型,然后再观察“狗”群体特征,然后再建立“狗”的模型。当给定新的未知个体时,我们将该个体分别于“大象”群体和“狗”群体模型进行比较,看这个个体更符合哪个群体模型的特征。

  所以分析上面可知,判别模型是直接学习p(y|x) 或者直接从特征空间学习类别标签,生成分类决策面;生成模型是对类别模型进行学习,即学习p(x|y) (每一类别数据的特征模型)和p(y) (别类概率)。如在上面的例子中,对于“大象”群体,特征分布可以表示为p(x|y=1) ,对“狗”群体建立特征模型p(x|y=0) 假设类别概率分布p(y) 是已知的,那么我们可以通过贝叶斯公式,对给定数据特征x 的类别后验概率推导为,

 第五,LR和SVM在学术界和工业界都广为人知并且应用广泛。

二、不同点

 第一,本质上是其loss function不同

  逻辑回归的损失函数:

  支持向量机的目标函数:

  ​逻辑回归方法基于概率理论,假设样本为1的概率可以用sigmoid函数来表示,然后通过极大似然估计的方法估计出参数的值

  支持向量机​基于几何间隔最大化原理,认为存在最大几何间隔的分类面为最优分类面

 第二,支持向量机只考虑局部的边界线附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用,虽然作用会相对小一些)

  SVM决策面的样本点只有少数的支持向量,当在支持向量外添加或减少任何样本点对分类决策面没有任何影响:

  LR中,每个样本点都会影响决策面的结果。用下图进行说明:

  由上得知:线性SVM不直接依赖于数据分布,分类平面不受非支持向量点影响;LR则受所有数据点的影响,如果数据不同类别strongly unbalance,一般需要先对数据做balancing

 第三,在解决非线性问题时,支持向量机采用核函数的机制,而LR通常不采用核函数的方法

  这个问题理解起来非常简单。分类模型的结果就是计算决策面,模型训练的过程就是决策面的计算过程。通过上面的第二点不同点可以了解,在计算决策面时,SVM算法里只有少数几个代表支持向量的样本参与了计算,也就是只有少数几个样本需要参与核计算。然而,LR算法里,每个样本点都必须参与决策面的计算过程,也就是说,假设我们在LR里也运用核函数的原理,那么每个样本点都必须参与核计算,这带来的计算复杂度是相当高的。所以,在具体应用时,LR很少运用核函数机制

 第四,​线性SVM依赖数据表达的距离测度,所以需要对数据先做normalization,LR不受其影响

  一个基于概率,一个基于距离!

 第五,SVM的损失函数就自带正则!!!(损失函数中的1/2||w||^2项),这就是为什么SVM是结构风险最小化算法的原因!!!而LR必须另外在损失函数上添加正则项!!!

  所谓结构风险最小化,意思就是在训练误差和模型复杂度之间寻求平衡,防止过拟合,从而达到真实误差的最小化。未达到结构风险最小化的目的,最常用的方法就是添加正则项,SVM的目标函数里居然自带正则项!!!

LR和SVM的区别的更多相关文章

  1. 机器学习-LR推导及与SVM的区别

    之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助. 1.逻辑斯谛分布 介绍逻辑斯谛回 ...

  2. [笔记]LR和SVM的相同和不同

    之前一篇博客中介绍了Logistics Regression的理论原理:http://www.cnblogs.com/bentuwuying/p/6616680.html. 在大大小小的面试过程中,经 ...

  3. LR与SVM的异同

    原文:http://blog.sina.com.cn/s/blog_818f5fde0102vvpy.html 在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SV ...

  4. LR和SVM的相同和不同

    之前一篇博客中介绍了Logistics Regression的理论原理:http://www.cnblogs.com/bentuwuying/p/6616680.html. 在大大小小的面试过程中,经 ...

  5. 如何选择分类器?LR、SVM、Ensemble、Deep learning

    转自:https://www.quora.com/What-are-the-advantages-of-different-classification-algorithms There are a ...

  6. KNN和SVM的区别和联系

    先从两者的相同点来看吧,两者都是比较经典的机器学习分类算法,都属于监督学习算法,都对机器学习的算法选择有着重要的理论依据. 区别: 1 KNN对每个样本都要考虑.SVM是要去找一个函数把达到样本可分. ...

  7. LR、SVM、RF、GBDT、XGBoost和LightGbm比较

    正则化 L1范数 蓝色的是范数的解空间,红色的是损失函数的解空间.L2范数和损失函数的交点处一般在坐标轴上,会使\(\beta=0\),当然并不一定保证交于坐标轴,但是通过实验发现大部分可以得到稀疏解 ...

  8. LR问题集合

    LR如何解决低维不可分 特征映射:通过特征变换的方式把低维空间转换到高维空间,而在低维空间不可分的数据,到高维空间中线性可分的几率会高一些.具体方法:核函数,如:高斯核,多项式核等等. 从图模型角度看 ...

  9. 机器学习常见面试题—支持向量机SVM

    前言 总结了2017年找实习时,在头条.腾讯.小米.搜狐.阿里等公司常见的机器学习面试题. 支持向量机SVM 关于min和max交换位置满足的 d* <= p* 的条件并不是KKT条件 Ans: ...

随机推荐

  1. C学习随笔

    1)要经常复习,一些基础的知识点,学过的.讲过的实例,应多看一下,学习并掌握编程的语法.思路.实验中可看出,不少同学对以前知识没有掌握,对讲过的实例没有理解2)要经常实践,纸上得来终觉浅,绝知此事要躬 ...

  2. 个人作业 - Week3 - 案例分析

    调研与评测 真实用户采访: 用户姓名: 刘斯盾 用户的背景和需求: 用户是一位计算机专业学生,需要浏览技术博客来扩充自己的学识. 用户使用博客园证明: 产品是否解决用户问题: 在码代码过程中遇到的很多 ...

  3. 推荐一个php7+ mongodb三方类

      373 次阅读  ·  读完需要 8 分钟 5 由于项目需要,把项目升级到了php7.但是升级了之后发现mongo扩展不能用了.php7.0以上只支持mongodb扩展了.而mongodb扩展的驱 ...

  4. K3CLOUD安装教程

    1.安装SQLSERVER2008 2.安装K3CLOUD安装包,此处各种安装iis,tomcat,ftp等环境,有过it经验的应该都能自己搞定,不详细赘述 3.进入管理中心,进行设置,默认为127. ...

  5. ERP开源框架 + 二次开发平台 介绍

    经历了多年软件开发,深受网络大侠们的资源共享才得以有所成绩, 本人主要是做企业ERP软件,一直有个感受,开发具体某个功能不难,但随着需求的增加,管理庞大的代码却成了最大的问题 而为企业管理所做的开发, ...

  6. 【转】Thread Local的正确原理与适用场景

    本文转发自技术世界,原文链接 http://www.jasongj.com/java/threadlocal/ ThreadLocal解决什么问题 由于 ThreadLocal 支持范型,如 Thre ...

  7. Nginx PREACCESS阶段 如何限制每个客户端每秒处理请求数

    L:56 limit_req_zone $binary_remote_addr zone=one:10m rate=2r/m;#以用户IP作为key 开辟共享内存10M 并且限制每分钟2个请求 rat ...

  8. 美国运营商推送假5G图标:用户当场蒙圈了

    面对5G大潮,大家都想“争当第一”.美国运营商AT&T想出奇招,打算玩一把“障眼法”. 据外媒报道,AT&T的用户从明年开始会在手机右上角看到“5G E”的图标.当然,这并不是他们的手 ...

  9. const,static,volatile关键字的作用

    const关键字: 1.欲阻止一个变量被改变,可使用const,在定义该const变量时,需先初始化,以后就没有机会改变他了: 2.对指针而言,可以指定指针本身为const,也可以指定指针所指的数据为 ...

  10. Spring的 AOP底层用到两种代理机制

    JDK 的动态代理:针对实现了接口的类产生代理.CGlib 的动态代理:针对没有实现接口的类产生代理,应用的是底层的字节码增强的技术 生成当前类的子类对象 JDK动态代理实现1. 创建接口和对应实现类 ...