Codeforces.954I.Yet Another String Matching Problem(FFT)
\(Description\)
对于两个串\(a,b\),每次你可以选择一种字符,将它在两个串中全部变为另一种字符。
定义\(dis(a,b)\)为使得\(a,b\)相等所需的最小修改次数。
给定两个串\(S,T\),对于\(S\)中所有长为\(|T|\)的子串\(S'\),输出\(dis(S',T)\)。
\(1\leq|T|\leq|S|\leq125000\),字符集为\(a\sim f\)。
\(Solution\)
考虑\(dis(a,b)\)怎么求。用一个并查集,依次枚举\(a_i,b_i\),如果\(a_i\neq b_i\)且\(a_i,b_i\)还不在一个集合内,就将它们合并,\(dis\)++。
(也可以考虑建一张无向图,在\(a_i,b_i\)间连边。因为每个连通块最后都要变成同一个字符,所以\(dis=节点数(6)-连通块数\))
考虑枚举每一个位置\(i\in[0,|S|-|T|]\),我们需要对每个\(j\in[0,|T|-1]\),都判一下是否需要合并\(S_{i+j},T_j\),复杂度是\(O(|S||T|)\)的。但事实上我们只需要判断,这\(6\)种字符之间,是否在同一位置上出现过两种不同字符就可以了(然后尝试把它们合并)。
也就是枚举两种不同的字符\(a,b\),判一下它们在哪些位置同时出现了(\(S_i=a\)而\(T_i=b\))。
令\(f_i=[S_i=a],\ g_i=[T_i=b]\),\(F(x)=\sum_{i=0}^{|T|-1}f_{x+i}g_i\)。\(F(x)\)可以用\(FFT\)求出。
若\(F(x)\neq0\),那么\(a,b\)就在同一位置出现了,而且是在\(x\)处的子串中。枚举\(x\)时尝试合并一下\(a,b\)就可以了。
这样复杂度\(O(36n\log n+36n\alpha(n))\)+FFT的大常数。\(CF\)比较轻松过,\(BZOJ\)就算了。。
当然有很多可以优化的地方,比如减少\(f,g\)的\(FFT\)次数(1653ms->686ms)。
\(CF\)上还有两种更优的做法,没太看懂。。
//686ms 63900KB(1653ms 18800KB)
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=(1<<18)+5;
const double PI=acos(-1);
int rev[N],fa[6];
char S[N],T[N];
bool neq[N][6][6];
struct Complex
{
double x,y;
Complex(double x=0,double y=0):x(x),y(y) {}
Complex operator +(const Complex &a) {return Complex(x+a.x, y+a.y);}
Complex operator -(const Complex &a) {return Complex(x-a.x, y-a.y);}
Complex operator *(const Complex &a) {return Complex(x*a.x-y*a.y, x*a.y+y*a.x);}
}f[6][N],g[6][N],F[N];
void FFT(Complex *a,int lim,int opt)
{
for(int i=1; i<lim; ++i) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1; Complex Wn(cos(PI/mid),opt*sin(PI/mid));
for(int j=0; j<lim; j+=i)
{
Complex w(1,0),t;
for(int k=j; k<j+mid; ++k,w=w*Wn)
a[k+mid]=a[k]-(t=w*a[k+mid]), a[k]=a[k]+t;
}
}
if(opt==-1) for(int i=0; i<lim; ++i) a[i].x/=lim;
}
int Find(int x)
{
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
int main()
{
scanf("%s%s",S,T);
int n=strlen(S),m=strlen(T),lim=1,l=-1;
while(lim<=n+m) lim<<=1,++l;
for(int i=1; i<lim; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
std::reverse(T,T+m);//!
for(int a=0; a<6; ++a)//!
{
const char aa=a+97;
for(int i=0; i<n; ++i) f[a][i]=Complex(S[i]==aa,0);
for(int i=0; i<m; ++i) g[a][i]=Complex(T[i]==aa,0);
FFT(f[a],lim,1), FFT(g[a],lim,1);
}
for(int a=0; a<6; ++a)
for(int b=0; b<6; ++b)
{
if(a==b) continue;
// for(int i=0; i<lim; ++i) f[i].x=f[i].y=g[i].x=g[i].y=0;
// for(int i=0; i<n; ++i) f[i]=Complex(S[i]==a,0);
// for(int i=0; i<m; ++i) g[i]=Complex(T[i]==b,0);
// FFT(f,lim,1), FFT(g,lim,1);
for(int i=0; i<lim; ++i) F[i]=f[a][i]*g[b][i];
FFT(F,lim,-1);
for(int i=0; i<n; ++i) neq[i][a][b]=(int)(F[m+i-1].x+0.5);
}
for(int i=0; i<=n-m; ++i)
{
for(int j=0; j<6; ++j) fa[j]=j;
int ans=0;
for(int j=0; j<6; ++j)
for(int k=0; k<6; ++k)
if(neq[i][j][k]&&Find(j)!=Find(k)) ++ans,fa[fa[j]]=fa[k];
printf("%d ",ans);
}
return 0;
}
Codeforces.954I.Yet Another String Matching Problem(FFT)的更多相关文章
- Codeforces 954I Yet Another String Matching Problem(并查集 + FFT)
题目链接 Educational Codeforces Round 40 Problem I 题意 定义两个长度相等的字符串之间的距离为: 把两个字符串中所有同一种字符变成另外一种,使得两个 ...
- 954I Yet Another String Matching Problem
传送门 分析 我们先考虑暴力如何计算 对于S的子串SS,如果它有位置i使得SS[i] != T[i]那么我们就将两个字符之间用并查集连边 最后答案很明显就是并查集中所有边的个数 于是我们可以发现对于S ...
- 【CF954I】Yet Another String Matching Problem(FFT)
[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...
- Educational Codeforces Round 40 I. Yet Another String Matching Problem
http://codeforces.com/contest/954/problem/I 给你两个串s,p,求上一个串的长度为|p|的所有子串和p的差距是多少,两个串的差距就是每次把一个字符变成另一个字 ...
- CF954I Yet Another String Matching Problem 并查集、FFT
传送门 题意:给出两个由小写$a$到$f$组成的字符串$S$和$T$($|S| \geq |T|$),给出变换$c1\,c2$表示将两个字符串中所有$c1$字符变为$c2$,求$S$的每一个长度为$T ...
- CF954I Yet Another String Matching Problem(FFT+并查集)
给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)子串与\(T\)的距离 两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数. \(|T|<=|S|<= ...
- 2018牛客网暑假ACM多校训练赛(第三场)D Encrypted String Matching 多项式 FFT
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round3-D.html 题目传送门 - 2018牛客多校赛第三场 D ...
- CF954I Yet Another String Matching Problem
传送门 每次操作可以把两个字符串中所有同一种字符变成另外一种 定义两个长度相等的字符串之间的距离为:使两个字符串相等所需要操作的次数的最小值 求 \(s\) 中每一个长度为 \(|t|\) 的连续子串 ...
- string matching(拓展KMP)
Problem Description String matching is a common type of problem in computer science. One string matc ...
随机推荐
- Linux 编程笔记(四)
一.用户和用户组管理 添加新的用户账户使用useradd 格式useradd 选项 用户名 1.创建一个用户tian 其中 -d -m参数用来为登陆,登录名产生一个主目录 /usr/tian(其 ...
- python(3):文件操作/os库
文件基本操作 r,以读模式打开, r+=r+w, w, 写模式(清空原来的内容), w+=w+r, a , 追加模式, a+=a+r, rb, wb, ab, b表示以二进制文件打开 想在一段文 ...
- centos7.5上一步步部署jumpserver
1.基础环境:centos7.5:关闭防火墙和selinux 2.修改字符集,否则可能会报input/output error 的问题,因为日志里打印了中文 [root@xzw ~]# localed ...
- linux下mysql源码安装
参考链接:http://blog.csdn.net/zqtsx/article/details/9378703 下载mysql安装包, 不会下载点这里 地址:ftp://mirror.switch.c ...
- wampserver本地配置域名映射
本地开发时,一般是在浏览器输入 http://localhost/项目文件夹名 来测试网页文件,你有没有想过在本地在浏览器输入你自己设定的一个域名进入项目文件夹中去,本地配置多域名可以测试二级域名以及 ...
- linux基础练习题(1)
Linux命令作业(关卡一) 练习题1 理解操作系统的作用,以及各种操作系统的不同 要求: 简述什么是OS 简述应用程序.硬件.OS的关系 列举出3种常见的操作系统 简述Ubuntu和Linux的关系 ...
- 数组练习题A财务管理
第一次看全英文的题,还是有点不舒服的感觉,还是用了翻译器 Larry graduated this year and finally has a job. He's making a lot of m ...
- react-native 之gradle-2.x-all.zip 下载缓慢或失败
去官网http://www.gradle.org/downloadshttp://services.gradle.org/distributions下载匹配的 Gradle 版本把zip直接放到C:\ ...
- vscode c++ cmake template project
VSCode configure C++ dev environment claim use CMake to build the project. For debugging, VSCode's C ...
- asp.net core 缓存和Session
缓存 缓存在内存中 ASP.NET Core 使用 IMemoryCache内存中缓存是使用依赖关系注入从应用中引用的服务. 请在ConfigureServices中调用AddMemoryCache( ...