BZOJ

LOJ

洛谷


(下面点亮一个灯泡就说成染色了,感觉染色比较顺口...

注意完全二叉树\(\neq\)满二叉树,点亮第一个灯泡\(\neq\)第一次点亮一号灯泡,根节点应该就是\(1\)...

代价取决于下一次跳到哪个点,考虑记下这个状态,令\(f[i][j]\)表示染完\(i\)这棵子树后下一次染\(j\)的最小花费,但是状态数是\(O(n^2)\)的。

因为染色顺序很特殊,染完整棵\(i\)子树后下一步要么是染\(i\)的某个祖先,要么是染\(i\)的某个祖先的另一个儿子(除去\(i\)这棵子树外的另一棵子树)。同时树深是\(O(\log n)\)的,也就是一个点最多有\(\log n\)个祖先。

所以我们记\(f[i][j]\)表示染完\(i\)子树后,走到\(i\)的\(j\)级祖先的最小花费;\(g[i][j]\)表示染完\(i\)子树后,走到\(i\)的\(j\)级祖先的另一个儿子处(即\(i\)的\(j\)级祖先的兄弟节点)的最小花费。状态数是\(O(n\log n)\)的。

考虑\(f[i][j]/g[i][j]\)的转移。

如果\(i\)是叶子节点,那直接算一下走到对应节点的花费即可。

如果\(i\)只有左儿子,那走到左儿子再从左儿子走到对应节点即可。

否则\(i\)有两个儿子\(l,r\),要么是\(i\to l\to r\to i的对应祖先\),要么是\(i\to r\to l\to i的对应祖先\),取个\(\min\)即可。

DP的复杂度也是\(O(n\log n)\)的。

然后怎么统计以\(x\)作为起点的答案?

注意到一定是染完\(x\)子树,然后跳到\(fa[x]\),染\(fa[x]\)的另一棵子树(如果有);然后跳到\(fa[fa[x]]\),染\(fa[fa[x]]\)的另一棵子树...重复这个过程。

每次跳\(fa\),用DP数组统计一下花费就好了。总复杂度也是\(O(n\log n)\)。

注意是用dep[1]等于\(1\)来得到dep的(因为要算\(g[i][j]\),表示\(j\)级祖先的另一个儿子!)。


//72992kb	784ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define fa(x) (x>>1)
#define lson(x) (x<<1)
#define rson(x) (x<<1|1)
#define Anc(x,j) (x>>j)//x的j级祖先
#define Bro(x,j) ((x>>j-1)^1)//x的j级祖先的另一个儿子
typedef long long LL;
const int N=2e5+5,BIT=18; int A[N],dep[N],dis[N][BIT];
LL f[N][BIT],g[N][BIT];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
} int main()
{
const int n=read();
for(int i=1; i<=n; ++i) A[i]=read();
dep[1]=1;
for(int x=2; x<=n; ++x)
{
dep[x]=dep[fa(x)]+1, dis[x][1]=read();
for(int j=2; j<=dep[x]; ++j)
dis[x][j]=dis[fa(x)][j-1]+dis[x][1];
}
for(int x=n; x; --x)
{
int l=lson(x),r=rson(x);
for(int j=1; j<=dep[x]; ++j)
if(r<=n)
{
f[x][j]=std::min(1ll*A[l]*dis[l][1]+g[l][1]+f[r][j+1],1ll*A[r]*dis[r][1]+g[r][1]+f[l][j+1]);
g[x][j]=std::min(1ll*A[l]*dis[l][1]+g[l][1]+g[r][j+1],1ll*A[r]*dis[r][1]+g[r][1]+g[l][j+1]);
}
else if(l<=n)
{
f[x][j]=1ll*A[l]*dis[l][1]+f[l][j+1];
g[x][j]=1ll*A[l]*dis[l][1]+g[l][j+1];
}
else f[x][j]=1ll*dis[x][j]*A[Anc(x,j)], g[x][j]=1ll*(dis[x][j]+dis[Bro(x,j)][1])*A[Bro(x,j)];
}
LL ans=1ll<<61;
for(int i=1; i<=n; ++i)
{
LL now=f[i][1];
for(int x=fa(i),las=i; x; las=x,x=fa(x))
{
int y=las^1;
if(y<=n) now+=1ll*dis[y][1]*A[y]+f[y][2];
else now+=1ll*dis[x][1]*A[fa(x)];
}
ans=std::min(ans,now);
}
printf("%lld\n",ans); return 0;
}

BZOJ.4446.[SCOI2015]小凸玩密室(树形DP)的更多相关文章

  1. [BZOJ4446]SCoi2015 小凸玩密室 树形DP(烧脑高能预警)

    4446: [Scoi2015]小凸玩密室 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点 ...

  2. bzoj 4446: [Scoi2015]小凸玩密室

    Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...

  3. BZOJ4446:[SCOI2015]小凸玩密室(树形DP)

    Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室. 每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...

  4. LUOGU P4253 [SCOI2015]小凸玩密室(树形dp)

    传送门 解题思路 玄学树形\(dp\),题目描述极其混乱...看错了两次题,设首先根据每次必须点完子树里的灯才能点别的,那么点灯情况只有两种,第一种是点到某一个祖先,第二种是点到某一个祖先的兄弟.所以 ...

  5. bzoj 4446: [Scoi2015]小凸玩密室【树形dp】

    神仙题!参考https://www.cnblogs.com/wfj2048/p/7695711.html 注意完全二叉树不是满二叉树!!!! 设g[u][j]为u遍历完子树到深度为i-1的祖先的兄弟的 ...

  6. BZOJ 4443: [Scoi2015]小凸玩矩阵 最大流

    4443: [Scoi2015]小凸玩矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4443 Description 小凸和小方是好 ...

  7. bzoj 4443 [Scoi2015]小凸玩矩阵 网络流,二分

    [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1564  Solved: 734[Submit][Status][Di ...

  8. BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】

    题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...

  9. [bzoj4446] [loj#2009] [Scoi2015] 小凸玩密室

    Description 小凸和小方相约玩密室逃脱,这个密室是一棵有 \(n\) 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 \(Ai\) ,每条边也有个权值 \ ...

随机推荐

  1. Python变量的作用域

    局部变量 局部变量是指在函数内部定义并使用的变量,他只在函数内部有效.即函数内部的名字只在函数运行时才会创建,在函数运行之前或者运行完毕之后,所有的名字就都不存在了.所以,如果在函数外部使用函数内部定 ...

  2. IDEA中每次拷贝一个项目的时候必须标记一下配置文件resources,否则报错

  3. Idea设置行注释不显示在行首

    如图:idea使用ctrl+/注释时候,//都在行首,强迫症表示受不了 解决方法如图

  4. Caused by: java.lang.ClassNotFoundException: backtype.storm.topology.IRichSpout

    1:初次运行Strom程序出现如下所示的错误,贴一下,方便脑补,也希望帮助到看到的小伙伴: 错误如下所示,主要问题是刚开始使用maven获取jar包的时候需要写<scope>provide ...

  5. JDK1.8 JVM参数配置

    JAVA_OPTS=" -server #服务器模式 -Xmx4g #JVM最大允许分配的堆内存,按需分配 -Xms4g #JVM初始分配的堆内存,一般和Xmx配置成一样以避免每次gc后JV ...

  6. Windows 7下java SDK下载、安装及环境变量设置

    第一步:下载Java JDK   1 登录官网站下载正版JDK   2 点击"SDK Download"进入Java JDK下载页面 注明: Java JDK和Java JRE区别 ...

  7. BETA准备

    过去存在的问题 文档问题 未能事先做好设计文档,且小程序与后端数据库接口存在问题 界面问题 原型图设计花的时间较少,小程序设计界面仍相对粗糙,前端成员css元素应用经验不足 小程序界面之间对接存在问题 ...

  8. One point compactification

    Theorem (One point compactification) Any locally compact space \(X\) can be embedded in another comp ...

  9. Comparison of several types of convergence

    In functional analysis, several types of convergence are defined, namely, strong convergence for ele ...

  10. 【Android】Android apk默认安装位置设置

    在Android工程中,设置apk的默认安装位置 在AndroidManifest.xml文件Manifest标签中添加android:installLocation属性 android:instal ...