[bzoj2506]calc_分块处理
calc bzoj-2506
题目大意:给一个长度为n的非负整数序列A1,A2,…,An。现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值i的个数。
注释:$0\le n,m\le 10^5$,$1\le p\le 10^4$。
想法:
直接把询问离线,就变成了求前$i$个数中$\% p=k$的数的个数。
显然直接做肯定做不了。
我们考虑按照mod数分块。
因为上限是$10^4$
如果$p\le 100$,我们用一个$f[i][j]$表示枚举到当前数除以$i$余$j$的数的个数。更新的复杂度为$O(\sqrt{p})$
反之$p<100$,$g[i]$表示枚举到当前数值为$i$的数的个数。更新的复杂度为$O(1)$
考虑如何查询答案:
如果$p\le 100$,直接输出,复杂度为$O(1)$。
反之,我们需要查询$g[k]+g[k+p]+g[k+2p]+...$。时间复杂度为$O(\sqrt{q})$。
故此总时间复杂度为$O(mlogm+n\sqrt{p})$。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int f1[110][110],f2[N];
int ans[2][N],a[N],cnt;
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
struct Node {int dic,id,f,p,k;}q[N<<1];
inline bool cmp(const Node &a,const Node &b) {return a.dic<b.dic;}
inline void update(int x)
{
for(int i=1;i<=100;i++) f1[i][x%i]++;
f2[x]++;
}
int main()
{
// freopen("bzoj2506.in","r",stdin);
int mx=0;
int n=rd(),m=rd(); for(int i=1;i<=n;i++) a[i]=rd(),mx=max(mx,a[i]);
for(int i=1;i<=m;i++)
{
int l=rd(),r=rd(),p=rd(),k=rd();
q[++cnt].dic=l-1,q[cnt].p=p,q[cnt].k=k,q[cnt].f=0,q[cnt].id=i;
q[++cnt].dic= r; q[cnt].p=p,q[cnt].k=k,q[cnt].f=1,q[cnt].id=i;
}
sort(q+1,q+cnt+1,cmp);
int pnt=0;
for(int i=1;i<=cnt;i++)
{
while(pnt<=q[i].dic) update(a[pnt]),pnt++;
int p=q[i].p,k=q[i].k;
if(p<=100)
{
ans[q[i].f][q[i].id]=f1[p][k];
}
else for(int j=k;j<=mx;j+=p)
{
ans[q[i].f][q[i].id]+=f2[j];
}
}
for(int i=1;i<=m;i++) printf("%d\n",ans[1][i]-ans[0][i]);
return 0;
}
小结:这种根据当前范围思考不同的解决策略的分类讨论思想是极其重要的。
[bzoj2506]calc_分块处理的更多相关文章
- PHP搭建大文件切割分块上传功能
背景 在网站开发中,文件上传是很常见的一个功能.相信很多人都会遇到这种情况,想传一个文件上去,然后网页提示"该文件过大".因为一般情况下,我们都需要对上传的文件大小做限制,防止出现 ...
- POJ2104 K-th Number [分块做法]
传送:主席树做法http://www.cnblogs.com/candy99/p/6160704.html 做那倒带修改的主席树时就发现分块可以做,然后就试了试 思想和教主的魔法差不多,只不过那个是求 ...
- HDU 4467 分块
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4467 题意:给定n个点m条边的无向图,点被染色(黑0/白1),边带边权.然后q个询问.询问分为两种: ...
- 2016 ACM/ICPC Asia Regional Dalian Online 1010 Weak Pair dfs序+分块
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- bzoj2002弹(dan)飞绵羊 分块水过
据说是道lct求深度的题 但是在小猫大的指点下用分块就n^1.5水过了 = =数据忘记加强系列 代码极其不美观,原因是一开始是听小猫大讲的题意,还以为是弹到最前面... #include <cs ...
- BZOJ2506: calc
Description 给一个长度为n的非负整数序列A1,A2,…,An.现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值 ...
- C语言两种查找方式(分块查找,二分法)
二分法(必须要保证数据是有序排列的): 分块查找(数据有如下特点:块间有序,块内无序):
- [New Portal]Windows Azure Storage (14) 使用Azure Blob的PutBlock方法,实现文件的分块、离线上传
<Windows Azure Platform 系列文章目录> 相关内容 Windows Azure Platform (二十二) Windows Azure Storage Servic ...
随机推荐
- ESLint - 简介
ESLint是一个QA工具,用来避免低级错误和统一代码的风格. ESLint被设计为完全可配置的,主要有两种方式来配置ESLint: 在注释中配置:使用JavaScript注释直接把配置嵌入到JS文件 ...
- 使用Jenkins进行android项目的自动构建(1)
环境搭建 1. 下载JDK,安装,并将JDK的安装目录加入到环境变量JAVA_HOME,将JDK的bin目录加入到环境变量PATH. 2. 下载Android SDK,解压,并将SDK的安装目录加入到 ...
- InChatter系统开源聊天模块前奏曲
最近在研究WCF,又因为工作中的项目需要,要为现有的系统增加一个聊天模块以及系统消息提醒等,因此就使用WCF做服务器端开发了一个简单的系统. 开发最初学习了东邪孤独大哥的<传说的WCF系列> ...
- 简单探讨弹性布局flex
css 弹性布局: 盒子模型: box-sizing属性1.content-box 正常的普通的盒子模型用padding和border会使盒子变大:(向外扩张)2.border-box 盒子模型,pa ...
- Matlab中size、numel、length、fix函数的使用
size():获取矩阵的行数和列数 (1)s=size(A), 当只有一个输出参数时,返回一个行向量,该行向量的第一个元素时矩阵的行数,第二个元素是矩阵的列数. (2)[r,c]=size ...
- 原生 js 整理
常见的事件 window.event 代表着,事件的状态,只有在事件的过程中才有效.
- dom监听事件class
layui.use(['layer', 'form'], function(){ var layer = layui.layer ,form = layui.form; var $ = layui.j ...
- SQL_Server_2008定期自动备份详细图解
SQL_Server_2008定期自动备份详细图解 设置自动数据库的定期备份计划. http://wenku.baidu.com/link?url=Tu ...
- TortoiseSVN文件夹操作
(1).安装SVN·客户端 (2) 建立库: 1.新建文件夹,目录和文件夹名称最好都用英文,不要使用中文: 2.打开文件夹,在空白处按下“shift键+鼠标右键”: 3.在弹出的菜单中选择“Torto ...
- js判断图片是否有效
var ImgObj=new Image(); ImgObj.src= 'http://192.168.10.6:8082/3D/SERVER_1_DELL_880.jpg'; if(ImgObj.f ...