传送门

无重复元素的LCS问题

n2 做法不说了。

nlogn 做法 ——

因为LCS问题求的是公共子序列,顺序不影响答案,影响答案的只是两个串的元素是否相同,所以可以交换元素位置。

首先简化一下问题,假设P1恰好为单调递增的1,2,3,...n,那么很显然答案就是P2的最长上升子序列的长度

问题是P1并非单调递增的,但我们可以假定它就是1,2,3,...,n。

也就是重新定义一下第一个串中 所有数 的顺序,定义a[x] = i,也就是 数x 是第 i 个,然后再重新弄一下第二串的顺序,最后求一遍lis。

——代码

 #include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; const int MAXN = ;
int n, ans;
int a[MAXN], b[MAXN], c[MAXN]; inline int query(int x)
{
int ans = ;
for(; x; x -= x & -x) ans = max(ans, c[x]);
return ans;
} inline void update(int x, int d)
{
for(; x <= n; x += x & -x) c[x] = max(c[x], d);
} int main()
{
int i, j, x, y;
scanf("%d", &n);
for (i = ; i <= n; i++) scanf("%d", &x), a[x] = i;
for (i = ; i <= n; i++) scanf("%d", &x), b[i] = a[x];
for(i = ; i <= n; i++)
{
y = query(b[i] - ) + ;
update(b[i], y);
ans = max(ans, y);
}
printf("%d", ans);
return ;
}

还有另一种思路。也是 nlogn,而且比较好理解。(说实话,我真不理解上面的映射是怎么弄的)

原本 n做法是设 f[i][j] 表示 第一串的前 i 个数 和 第二串的前 j 个数 的最优答案(i 和 j 都不必须选),然后一阵乱搞。

nlogn——

可以改变状态的定义,f[i][j] 表示 第一串的前 i 个数 和 第二串的前 j 个数 的最有答案(i 不必须选,j 必须选

这样 f[i][] 只能由 f[i - 1][] 转移过来,这样就变成了分层的DP,并且只转移到 f[i][k] (其中 b[k] == a[i]),也就是只影响一个答案。

所以先记录和 a[i] 相同的 b[j] 的位置,然后 f 数组可以变成一维,动态维护 f 数组即可。

f[i] = max(f[j]) + 1 ( 1 <= j  < i && a[i] == b[j])

——代码

 #include <cstdio>
#include <iostream> using namespace std; const int MAXN = ;
int n, ans;
int a[MAXN], b[MAXN], c[MAXN], p[MAXN], f[MAXN]; inline int query(int x)
{
int ret = ;
for(; x; x -= x & -x) ret = max(ret, c[x]);
return ret;
} inline void update(int x, int d)
{
for(; x <= n; x += x & -x) c[x] = max(c[x], d);
} int main()
{
int i;
scanf("%d", &n);
for(i = ; i <= n; i++) scanf("%d", &a[i]);
for(i = ; i <= n; i++) scanf("%d", &b[i]), p[b[i]] = i;
for(i = ; i <= n; i++)
{
f[p[a[i]]] = query(p[a[i]] - ) + ;
update(p[a[i]], f[p[a[i]]]);
ans = max(ans, f[p[a[i]]]);
}
printf("%d", ans);
return ;
}

[luoguP1439] 排列LCS问题(DP + 树状数组)的更多相关文章

  1. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

  2. 树形DP+树状数组 HDU 5877 Weak Pair

    //树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...

  3. 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组

    题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...

  4. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  5. 第十四个目标(dp + 树状数组 + 线段树)

    Problem 2236 第十四个目标 Accept: 17    Submit: 35 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Probl ...

  6. Codeforces 1096F(dp + 树状数组)

    题目链接 题意: 对于长度为$n$的排列,在已知一些位的前提下求逆序对的期望 思路: 将答案分为$3$部分 $1.$$-1$与$-1$之间对答案的贡献.由于逆序对考虑的是数字之间的大小关系,故假设$- ...

  7. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  8. Codeforces 1085G(1086E) Beautiful Matrix $dp$+树状数组

    题意 定义一个\(n*n\)的矩阵是\(beautiful\)的,需要满足以下三个条件: 1.每一行是一个排列. 2.上下相邻的两个元素的值不同. 再定义两个矩阵的字典序大的矩阵大(从左往右从上到下一 ...

  9. BZOJ 4361 isn 容斥+dp+树状数组

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...

  10. codeforces 597C C. Subsequences(dp+树状数组)

    题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. 转 php中$_request与$_post、$_get的区别

    php中有$_REQUEST与$_POST.$_GET用于接受表单数据,当时他们有何种区别,什么时候用那种最好. 一.$_REQUEST与$_POST.$_GET的区别和特点 $_REQUEST[]具 ...

  2. Normal equations 正规方程组

    前面我们通过Gradient Descent的方法进行了线性回归,但是梯度下降有如下特点: (1)需要预先选定Learning rate: (2)需要多次iteration: (3)需要Feature ...

  3. 228 Summary Ranges 汇总区间

    给定一个无重复元素的有序整数数组,返回数组中区间范围的汇总. 示例 1: 输入: [0,1,2,4,5,7]输出: ["0->2","4->5",& ...

  4. [BZOJ1088][SCOI2005]扫雷Mine DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1088 记录下每一个格子对应左边格子放的雷的情况,然后dp转移就好了. #include&l ...

  5. 使用Gson解析Json数组遇到的泛型类型擦除问题解决方法

    谷歌Gson转换Json串有如下方法: public Object fromJson(String json, Type typeOfT);1可以使用它进行数组解析.如下,使用此方法解析Json串为类 ...

  6. redis-3.0.1 sentinel 主从高可用 详细配置

    最近项目上线部署,要求redis作高可用,由于redis cluster还不是特别成熟,就选择了redis sentinel做高可用.redis本身有replication,实现主从备份.结合sent ...

  7. CREATE TABLE - 定义一个新表

    SYNOPSIS CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } ] TABLE table_name ( { column_name data_ty ...

  8. 删除目录文件夹时出现:rm: cannot remove `/data/wwwroot/backidc': Is a directory

    rm -f 删除目录文件夹时出现:rm: cannot remove `/data/wwwroot/backidc': Is a directory cannot remove is a direct ...

  9. CAD参数绘制多段线(com接口)

    多段线又被称为多义线,表示一起画的都是连在一起的一个复合对象,可以是直线也可以是圆弧并且它们还可以加不同的宽度. 主要用到函数说明: _DMxDrawX::PathLineTo 把路径下一个点移到指定 ...

  10. jQuery动态移除和绑定事件

    function bindEvent() { //移除绑定事件 $('.btnsp').unbind('click'); //绑定事件 $('.btnsp').bind('click', functi ...