1043 方格取数  2000 noip 提高组

题目描述 Description

设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入描述 Input Description

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出描述 Output Description

只需输出一个整数,表示2条路径上取得的最大的和。

样例输入 Sample Input

8

2  3  13

2  6   6

3  5   7

4  4  14

5  2  21

5  6   4

6 3  15

7 2  14

0 0  0

样例输出 Sample Output

67

数据范围及提示 Data Size & Hint

如描述

分类标签 Tags 点此展开

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,map[][],f[][][][];
int main(){
cin>>n;
while(){
int x,y,z;
cin>>x>>y>>z;
if(x==&&y==&&z==) break;
map[x][y]=z;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
for(int l=;l<=n;l++)
if(l==j&&k==i)
f[i][j][k][l]=map[i][j]+max(max(f[i-][j][k-][l],f[i][j-][k][l-]),max(f[i-][j][k][l-],f[i][j-][k-][l]));
else
f[i][j][k][l]=map[i][j]+map[k][l]+max(max(f[i-][j][k-][l],f[i][j-][k][l-]),max(f[i-][j][k][l-],f[i][j-][k-][l]));
cout<<f[n][n][n][n];
return ;
}

DP

因为是取两次,所以有的同学会想到先取一遍最大值,把取过的附值为0,然后再取一遍。但这时怎样标记那个点取过是非常困难的,所以我们自然而然的想到可以设一个4维DP f[i][j][k][l] ,i代表第一次取值的横坐标,j代表第一次取值的纵坐标,k代表第二次取值的横坐标,l代表第二次取值的纵坐标,然后一个4重循环,列出动态转移方程。分成两种情况:两次取到公共点,两次所取的值不相同。

公共点:f[i][j][k][l]=a[i][j]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))//因为存在公共点,所以该点只取一次。总共四种情况,不重不漏。

不同点:

f[i][j][k][l]=a[i][j]+a[k][l]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))//同理;

1043 方格取数 2000 noip 提高组的更多相关文章

  1. 1043 方格取数 2000年NOIP全国联赛提高组

    1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond         题目描述 Description 设有N* ...

  2. codevs 1043 方格取数 2000年NOIP全国联赛提高组

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而 ...

  3. Codevs 1043 方格取数

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Descri ...

  4. codevs 方格取数

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Descri ...

  5. dp4--codeVs1043 方格取数

    dp4--codeVs1043 方格取数 一.心得 二.题目 1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Dia ...

  6. codevs_1043 方格取数(棋盘DP)

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description ...

  7. HRBUST - 1214 NOIP2000提高组 方格取数(多线程dp)

    方格取数 设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放人数字0.如下图所示(见样例 ,黄色和蓝色分别为两次走的路线,其中绿色的格子为黄色和蓝色共同走过的 ...

  8. tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp

    P1884 [NOIP2000T4]方格取数 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 [noip2000T4]方格取数 描述 设有N*N的方格图(N& ...

  9. [动态规划]P1004 方格取数

    ---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 ...

随机推荐

  1. Vue知识点小总结1

    ES6常用语法 变量的定义 let定义变量 不会变量提升 有全局作用域和函数作用域,块级作用域{} 不能重复定义 var定义变量 会变量提升 只有全局作用域和函数作用域 能够重复定义 const定义变 ...

  2. 372 Super Pow 超级次方

    你的任务是计算 ab 对 1337 取模,a 是一个正整数,b 是一个非常大的正整数且会以数组形式给出.示例 1:a = 2b = [3]结果: 8示例 2:a = 2b = [1,0]结果: 102 ...

  3. 21 调试我们的C#程序

    我们写的C#程序,很多的时候不是能一次就写对的.尤其是在实际的项目中,你经常要做的工作就是不断修改你写的程序,让它正常运行.程序有错误,主要是两种情况.一种是程序报错了,不能正常运行下去.另一种是程序 ...

  4. Redux 中的CombineReducer的函数详解

    combineReducers(reducers) 随着应用变得复杂,需要对 reducer 函数 进行拆分,拆分后的每一块独立负责管理 state 的一部分. combineReducers 辅助函 ...

  5. C#.NET,技巧篇(DataGridView线程操作)

    这个系列的文章,主要是平时做C#.NET(Framework 3.5)开发的时候,积累的经验和技巧.我们平时总有这样的体会,遇到一个特别难解决的问题,网上寻它千百度也没能搜索到有用的信息.这时你肯定会 ...

  6. [Windows Server 2008] MySQL单数据库迁移方法

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:MySQL ...

  7. struts2配置文件加载顺序

    struts2配置文件加载顺序: struts-default.xml/ struts-plugin.xml/ struts.xml/ struts.properties/ web.xml

  8. wparam , lparam 传递消息

    01.WM_PAINT消息 LOWORD(lParam)是客户区的宽,HIWORD(lParam)是客户区的高 02.滚动条WM_VSCROLL或WM_HSCROLL消息 LOWORD(wParam) ...

  9. Vue指令6:v-show

    根据表达式的真假值来渲染元素 用法大致一样: <h1 v-show="ok">Hello!</h1> 不同的是带有 v-show 的元素始终会被渲染并保留在 ...

  10. centos 搭建pptp

    很多朋友不会在CENTOS 在安装vpn,因为对于菜鸟来说安装VPN的确是个头晕的事情,特别是安装openvpn,不过安装pptp就稍微简单一点,国内网上有很多安装pptp的教程,但是都很繁杂,我在国 ...