题目大意

\(n\)(\(n\leq2*10^5\))个点,\(m\)(\(m\leq4*10^5\))条边的图,每条边有海拔\(a_i(a_i\leq10^9)\)、长度\(l_i(l_i\leq10^4)\),定义两点\(a,b\)距离为从\(a\)走到\(b\)至少要走的长度之和

\(q\)组询问,强制在线,每次给出\(v,p\),表示询问不走\(a_i\leq p\)的边,从\(v\)出发能走到的与\(1\)号点距离最近的点到\(1\)号点的距离

题解

预处理每个点到\(1\)号点的距离

每次询问相当于在问删掉所有\(a_i\leq p\)的边,点\(v\)所在连通块中到\(1\)号点最小的距离

发现只考虑原图的最大生成树上的边,不会改变连通性

点\(v\)所在连通块之所以到不了别的点集,是因为它们之间在最大生成树上的路径中有一条边\(a_i\leq p\)

考虑kruskal的过程,相当于有一次是用一条\(a_i\leq p\)的边合并了点\(v\)所在连通块与其他点集

这样就可以以这种方法建一新棵树:一开始有\(n\)个点,没有边,kruskal中每合并两个点集,就新建一个表示当前边的点,并且将两个点集新树中的根变成新建点的儿子

新树中一个点的子树表示这个点对应的原图的最大生成树中一条边kruskal时合并的两个点集,也就是说,这个子树中任意两点的路径中不会出现边权小于该边的边

所以每次询问在新树中找\(v\)的深度最小的\(a_i> p\)的祖先

这个新树也叫kruskal重构树

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define maxn 200010
#define maxm 800010
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int t,n,m,fir[maxn],nxt[maxm],v[maxm],w[maxm],fa[maxn],anc[maxn<<1][20],val[maxn<<1],mind[maxn<<1],ans;
int cnte,cntnd,dis[maxn],vis[maxn],q,k,s;
struct edge{int u,v,w;}e[maxm>>1];
void ade(int u1,int v1,int w1){v[cnte]=v1,w[cnte]=w1,nxt[cnte]=fir[u1],fir[u1]=cnte++;}
priority_queue<pii >Q;
bool cmp(edge x,edge y){return x.w>y.w;}
void reset()
{
rep(i,1,n)fa[i]=-i,fir[i]=-1,dis[i]=2147483647,vis[i]=0;
rep(i,1,(n<<1)){val[i]=0,mind[i]=2147483647;rep(j,0,19)anc[i][j]=0;}ans=0;
cnte=0,cntnd=n;
}
int f(int x){return fa[x]<0?x:fa[x]=f(fa[x]);}
int main()
{
t=read();
while(t--)
{
n=read(),m=read();
reset();
rep(i,1,m){int x=read(),y=read(),l=read(),a=read();ade(x,y,l),ade(y,x,l),e[i].u=x,e[i].v=y,e[i].w=a;}
sort(e+1,e+m+1,cmp);
dis[1]=0;Q.push(mp(0,1));
while(!Q.empty())
{
int u=Q.top().se;Q.pop();
if(vis[u])continue;vis[u]=1;
view(u,k)if(dis[v[k]]>dis[u]+w[k])
{
dis[v[k]]=dis[u]+w[k];
if(!vis[v[k]])Q.push(mp(-dis[v[k]],v[k]));
}
}
rep(i,1,n)mind[i]=dis[i];
rep(i,1,m)
{
int x=f(e[i].u),y=f(e[i].v);
if(x!=y)
{
cntnd++,val[cntnd]=e[i].w,anc[-fa[x]][0]=anc[-fa[y]][0]=cntnd,mind[cntnd]=min(mind[-fa[x]],mind[-fa[y]]);
fa[x]=y,fa[y]=-cntnd;
}
}
dwn(i,cntnd,1){rep(j,1,19)anc[i][j]=anc[anc[i][j-1]][j-1];}
q=read(),k=read(),s=read();
while(q--)
{
int u=read(),p=read(),tu;
u=(u+k*ans-1)%n+1,p=((LL)p+(LL)k*ans)%(LL)(s+1),tu=u;
dwn(i,19,0)if(anc[tu][i]&&val[anc[tu][i]]>p)tu=anc[tu][i];
write(ans=mind[tu]);
}
}
return 0;
}
/*
2
4 3
1 2 50 1
2 3 100 2
3 4 50 1
5 0 2
3 0
2 1
4 1
3 1
3 2
4 3
1 2 50 1
2 3 100 2
3 4 50 1
5 0 2
3 0
2 1
4 1
3 1
3 2
*/

并不对劲的bzoj5415:loj2718:uoj393:p4768:[NOI2018]归程的更多相关文章

  1. Luogu P4768 [NOI2018]归程(Dijkstra+Kruskal重构树)

    P4768 [NOI2018]归程 题面 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点. \(m\) 条边的无向连通图(节点的编 ...

  2. P4768 [NOI2018]归程(kruskal 重构树)

    洛谷P4768 [NOI2018]归程 LOJ#2718.「NOI2018」归程 用到 kruskal 重构树,所以先说这是个啥 显然,这和 kruskal 算法有关系 (废话 这个重构树是一个有点权 ...

  3. [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)

    洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...

  4. 洛谷P4768 [NOI2018]归程(Kruskal重构树)

    题意 直接看题目吧,不好描述 Sol 考虑暴力做法 首先预处理出从$1$到每个节点的最短路, 对于每次询问,暴力的从这个点BFS,从能走到的点里面取$min$ 考虑如何优化,这里要用到Kruskal重 ...

  5. Luogu P4768 [NOI2018]归程

    题目链接 \(Click\) \(Here\) \(Kruskal\)重构树的好题.想到的话就很好写,想不到乱搞的难度反而相当高. 按照点的水位,建出来满足小根队性质的\(Kruskal\)重构树,这 ...

  6. 洛谷P4768 [NOI2018]归程(可持久化并查集,最短路)

    闲话 一个蒟蒻,在网络同步赛上进行了这样的表演-- T2组合计数不会,T3字符串数据结构不会,于是爆肝T1 一开始以为整个地图都有车,然后写了2h+的树套树,终于发现样例过不去 然后写可持久化并查集D ...

  7. 洛谷P4768 [NOI2018]归程 [可持久化并查集,Dijkstra]

    题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时 ...

  8. 洛谷 P4768 [NOI2018]归程

    洛谷 361行代码的由来 数据分治大发好啊- NOI的签到题,可怜我在家打了一下午才搞了80分. 正解应该是kruskal重构树或排序+可持久化并查集. 我就分点来讲暴力80分做法吧(毕竟正解我也没太 ...

  9. P4768 [NOI2018]归程

    \(\color{#0066ff}{题目描述}\) 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n) ...

随机推荐

  1. Redis对象的设计与实现

    一.Redis对象结构Redis中的每个对象都由一个redisObject结构表示: typedef struct redisObject { unsigned type;//类型 unsigned ...

  2. codeforces #463

    D(树上倍增) 题意: 刚开始有一个点1,权值为0. 接下来有q个操作,每个操作有两种: 1 R W:新加一个点,这个点的权值为W,这个点的父亲是R 2 R X:在从点R到1的路径上,取出从R开始的不 ...

  3. DTD概述

    1. 什么是XML文件 可扩展标记语言,标准通用标记语言的子集,是用于标记电子文件使其具有结构性的标记语言. 2. 什么是dtd文件 DTD(文档类型定义)的作用是定义XML文档的合法构建模块.它使用 ...

  4. java多线程02-----------------synchronized底层实现及JVM对synchronized的优化

    java多线程02-----------------synchronized底层实现及JVM对synchronized的优化 提到java多线程,我们首先想到的就是synchronized关键字,它在 ...

  5. mysql explain 的type解释

    原文:http://blog.csdn.net/github_26672553/article/details/52058782 Explain命令 用于分析sql语句的执行情况和成本预估 今天我们重 ...

  6. Eclipse FindBugs的安装

    原文:http://blog.sina.com.cn/s/blog_62186b460100l3mx.html 1安装:首先到官方网站下载最新版本FindBugs    http://findbugs ...

  7. Bootstrap全局CSS样式之button和图片

    .btn-default--button的默认样式. .btn-primary--button的首选样式: .btn-success--button的成功样式: .btn-info--button的一 ...

  8. Linux-----Ubuntu设置开机启动模式

  9. C语言之基本算法34—分解质因数(方法一)

    //矩阵基础 /* ================================================================== 题目:输入一个正整数.将其分解为质因式,如:6 ...

  10. cin,和几个get函数的用法

    1.cin.get(字符变量名):用来接收字符 ch = cin.get(); cin.get(ch); 以上两者均可以 2.cin.get(字符数组名,接收字符数目)用来接收一行字符串,可以接收空格 ...