Android内存管理(10)MAT: 基本教程
原文:
Basic Tutorial
This tutorial provides a "jumping-off place" to get familiar with Memory Analyzer.
基本操作如下:
Step 1 - Getting a Heap Dump 创建 .hprof文件
Step 3 - The Histogram 柱状图查看某个类分配的对象数,注意要手动计算一次
Step 4 - The Dominator Tree 对象控制者树查看 对象控制关系
- Step 5 - Path to GC Roots 查看被root gc 管理的对象
Step 6 - The Leak Report 查看内存泄漏
Step 1 - Getting a Heap Dump 创建 .hprof文件
The Memory Analyzer works with heap dumps . Such a heap dump contains information about all Java objects alive at a given point in time. All current Java Virtual Machines can write heap dumps, but the exact steps depend on vendor, version and operation system. Find out more in the section Acquiring Heap Dumps .
Open a sample heap dump if you view this page inside the Eclipse help center.
For the purpose of this tutorial, we use Java 6 and JConsole on Windows. Start your application with Java 6, then start <jre6>/bin/jconsole.exe and select the running application (in this case Eclipse):
Then, select the operation dumpHeap from the com.sun.management.HotSpotDiagnostic MBean. The first parameter p0 is the full path to the heap dump file. Make sure you give it the file extension .hprof. The second parameter p1 should be left at true as we are only interested in live objects.
Step 2 - The Overview 概况
Open the heap dump via File > Open Heap Dump... to see the overview page.
On the right, you'll find the size of the dump and the number of classes, objects and class loaders.
Right below, the pie chart gives an impression on the biggest objects in the dump. Move your mouse over a slice to see the details of the objects in the object inspector on the left. Click on any slice to drill down and follow for example the outgoing references.
Step 3 - The Histogram 柱状图查看某个类分配的对象数,注意要手动计算一次
Select the histogram from the tool bar to list the number of instances per class, the shallow size and the retained size .
The Memory Analyzer displays by default the retained size of individual objects. However, the retained size of a set of objects - in this case all instances of a particular class - needs to be calculated.
在用mat分析 retained size 大小时,要手动计算一次。如下:
To approximate the retained sizes for all rows, pick icon from the tool bar. Alternatively, select a couple rows and use the context menu.
Using the context menu , you can drill-down into the set of objects which the selected row represents. For example, you can list the objects with outgoing or incoming references. Or group the objects by the value of an attribute. Or group the collections by their size. Or or or...
One thing that makes the Memory Analyzer so powerful is the fact that one can run any action on any set of objects. Just drill down and slice your objects the way you need them.
Another important feature is the facility to group any histogram by class loader, packages or superclass .
More: Analyze Class Loader
Grouping the histogram by superclass provides an easy way to find for example all the subclasses of java.util.AbstractMap, etc...
Step 4 - The Dominator Tree 对象控制者树查看 对象控制关系
The dominator tree displays the biggest objects in the heap dump. The next level of the tree lists those objects that would be garbage collected if all incoming references to the parent node were removed.
The dominator tree is a powerful tool to investigate which objects keep which other objects alive. Again, the tree can be grouped by class loader (e.g. components) and packages to ease the analysis.
Step 5 - Path to GC Roots 查看被root gc 管理的对象
Garbage Collections Roots (GC roots) are objects that are kept alive by the Virtual Machines itself. These include for example the thread objects of the threads currently running, objects currently on the call stack and classes loaded by the system class loader.
The (reverse) reference chain from an object to a GC root - the so called path to GC roots - explains why the object cannot be garbage collected. The path helps solving the classical memory leak in Java: those leaks exist because an object is still referenced even though the program logic will not access the object anymore.
Initially, the GC root reached by the shortest path is selected.
Step 6 - The Leak Report 查看内存泄漏
The Memory Analyzer can inspect the heap dump for leak suspects, e.g. objects or set of objects which are suspiciously big.
Learn more in this blog posting: Automated Heap Dump Analysis: Finding Memory Leaks with One Click .
Android内存管理(10)MAT: 基本教程的更多相关文章
- Android 内存管理分析(四)
尊重原创作者,转载请注明出处: http://blog.csdn.net/gemmem/article/details/8920039 最近在网上看了不少Android内存管理方面的博文,但是文章大多 ...
- 浅谈Android内存管理
最近在网上看了不少Android内存管理方面的博文,但是文章大多都是就单个方面去介绍内存管理,没有能全局把握,缺乏系统性阐述,而且有些观点有误,仅仅知道这些,还是无法从整体上理解内存管理,对培养系统优 ...
- [Android Memory] Android内存管理、监测剖析
转载自:http://blog.csdn.net/anlegor/article/details/23398785 Android内存管理机制: Android内存管理主要有:LowMemory Ki ...
- Android内存管理机制之一:low memory killer
转载自http://www.miui.com/thread-29268-1-1.html 准备写这个专题之前,心里是有点忐忑的.首先Android内存管理机制相当复杂,想要讲清楚比较困难:其次对于绝大 ...
- 移动端测试===Android内存管理: 理解App的PSS
Android内存管理: 理解App的PSS 原文链接:http://www.littleeye.co/blog/2013/06/11/android-memory-management-unders ...
- Android——内存管理基础
内存收集概念 内存垃圾收集器(garbage collector) 概念:自定内存管理. 功能:分配内存.保证所有被引用的对象还在内存中.可以释放在运行的代码中不再引用的对象的内存. 垃圾收集器避免了 ...
- Android 内存管理之优化建议
OOM(OutOfMemory)转:http://hukai.me/android-performance-oom/ 前面我们提到过使用getMemoryClass()的方法可以得到Dalvik He ...
- 深入理解Android内存管理原理(六)
一般来说,程序使用内存的方式遵循先向操作系统申请一块内存,使用内存,使用完毕之后释放内存归还给操作系统.然而在传统的C/C++等要求显式释放内存的编程语言中,记得在合适的时候释放内存是一个很有难度的工 ...
- 【原创】Android内存管理-OnTrimMemory
Application中有两个与内存管理相关的方法:onLowMemory()和 onTrimMemory(int level),源码如下 @CallSuper public void onLowMe ...
- 【原创】android内存管理-内存泄漏原因
转载请注明出处 http://www.cnblogs.com/weiwangnuanyang/p/5704596.html 先讲一下内存泄漏的概念:内存泄露是指无用对象持续占有内存,或者内存得不到及时 ...
随机推荐
- STM32单片机串口一键下载电路与操作方法详解
STM32三种启动模式对应的存储介质均是芯片内置的,它们是:1)用户闪存 = 芯片内置的Flash.2)SRAM = 芯片内置的RAM区,就是内存啦.3)系统存储器 = 芯片内部一块特定的区域,芯片出 ...
- HUST 1214 Cubic-free numbers II
Cubic-free numbers II Time Limit: 10000ms Memory Limit: 131072KB This problem will be judged on HUST ...
- [luoguP2758] 编辑距离(DP)
传送门 f[i][j] 表示第一串前 i 个到第二串前 j 个的最小编辑距离 f[i][j] = f[i - 1][j - 1] (s1[i] == s2[j]) f[i][j] = min(f[i ...
- poj 1659 判断是否能构成图Havel-Hakimi定理
//用到了Havel-Hakimi定理,判断是否能够构图 //两种情况不能构图,1:对剩下序列排序后,最大的度数超过了剩下的顶点数 // 2:对最大的度数后面的f个度数减-后,出现了负数 //记录到临 ...
- 将Jquery EasyUI中DataGird的数据导入Excel中
1.第一步获取前台DataGrid中的数据 var rows = $('#tb).datagrid("getRows"); if (rows.length = ...
- Linux下汇编语言学习笔记77 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- 夜话JAVA设计模式之单例模式(单件模式Singleton)
单例模式也叫单件模式,就是确保一个类只有一个实例,并提供一个全局访问点. 设计成单例即把某个类设计成我们自己管理的单独实例,避免实例对象的重复创建,我们只有通过单例类的全局访问点获取实例. 下面来看金 ...
- POJ——1061 青蛙的约会
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 117858 Accepted: 24599 Descript ...
- 4、Java并发性和多线程-并发编程模型
以下内容转自http://ifeve.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B%E6%A8%A1%E5%9E%8B/: 并发系统可以采用多种并发编程模型来实现. ...
- mysqlhighavailability
http://mysqlhighavailability.com/getting-started-with-mysql-group-replication/