题目 对称二叉树

  
   题目描述

思路

  检查是否符合对称条件

    条件很简单——结构对称&&点权对称

    要做到点权对称其实也就顺便结构对称了

    于是条件可以简化为点权对称

    可以考虑并行搜索

 bool con(int l,int r) {
if(l == -&&r == -)
return ;
if(l == -||r == -)
return ;
if(w[l] == w[r])
if(check(l,r))
return ;
return ;
}
bool check(int x,int y) {
if(x == -&&y == -)
return ;
if(x == -||y == -)
return ;
if(w[x] != w[y])
return ;
int l = Root[x].l,l1 = Root[y].l;
int r = Root[y].r,r1 = Root[x].r;
if(con(l,r)&&con(l1,r1))
return ;
return ;
}

  信仰深搜

    就三个点

  

    你就装作上面还有一个点

  

 int dfs(int x) {
if(x == -) return ;
if(check(Root[x].l,Root[x].r)) {
int ans = Find(x) + ;
return ans;
}
int ans = max(dfs(Root[x].l),dfs(Root[x].r));
return ans;
}

  找答案

    加一指根节点

 int Find(int x) {
int q = ;
int l = Root[x].l;
int r = Root[x].r;
if(l != -) q += Find(l) + ;
if(r != -) q += Find(r) + ;
return q;
}

  另外
    读入时要记录这样几个玩意儿

  

     for(i = ;i <= n;i++)
scanf("%d",&w[i]);
for(i = ;i <= n;i++)
scanf("%d%d",&Root[i].l,&Root[i].r);

  code

 

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1000001
using namespace std;
int w[M];
struct N {
int l,r;
}Root[M];
bool con(int,int);
bool check(int,int);
//两个函数相互递归调用,并行搜索检查是否符合要求
int dfs(int);
//核心
int Find(int);
//其实就是找有多少个点
int main() {
int i,n;
scanf("%d",&n);
for(i = ;i <= n;i++)
scanf("%d",&w[i]);
for(i = ;i <= n;i++)
scanf("%d%d",&Root[i].l,&Root[i].r);
int ans = dfs();
printf("%d",ans);
return ;
} bool con(int l,int r) {
if(l == -&&r == -)
return ;
if(l == -||r == -)
return ;
if(w[l] == w[r])
if(check(l,r))
return ;
return ;
}
bool check(int x,int y) {
if(x == -&&y == -)
return ;
if(x == -||y == -)
return ;
if(w[x] != w[y])
return ;
int l = Root[x].l,l1 = Root[y].l;
int r = Root[y].r,r1 = Root[x].r;
if(con(l,r)&&con(l1,r1))
return ;
return ;
}
int Find(int x) {
int q = ;
int l = Root[x].l;
int r = Root[x].r;
if(l != -) q += Find(l) + ;
if(r != -) q += Find(r) + ;
return q;
}
int dfs(int x) {
if(x == -) return ;
if(check(Root[x].l,Root[x].r)) {
int ans = Find(x) + ;
return ans;
}
int ans = max(dfs(Root[x].l),dfs(Root[x].r));
return ans;
}

总结

    信仰很重要

    这代码很慢但不至于卡常,还有大量可优化地方,此处不再赘述

    它非常好理解,相信任何人都能写出比这更优秀的代码

2018NOIP普及T4---对称二叉树的更多相关文章

  1. P5018 [NOIP2018 普及组] 对称二叉树

    P5018 [NOIP2018 普及组] 对称二叉树 题目 P5018 思路 通过hash值来判断左右树是否相等 \(hl[i]\) 与 \(Hl[i]\) 是防止hash冲突, \(r\) 同理 注 ...

  2. [NOIP2018 PJ T4]对称二叉树

    题目大意:问一棵有根带权二叉树中最大的对称二叉树子树,对称二叉树为需满足将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 题解:在对称二叉树中,对于深度相同的两个节点$u,v$ ...

  3. 2021.08.09 P5018 对称二叉树(树形结构)

    2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...

  4. [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解

    啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...

  5. 【18NOIP普及组】对称二叉树(信息学奥赛一本通 1981)(洛谷 5018)

    [题目描述] 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树: 1.二叉树: 2.将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 下图中节点内的数字为权值,节点外 ...

  6. LeetCode【101. 对称二叉树】

    对称二叉树,就是左节点的左节点等于右节点的右节点,左节点的右节点等于右节点的左节点. 很自然就想到迭代与递归,可以创建一个新的函数,就是另一个函数不断的判断,返回在主函数. class Solutio ...

  7. 【leetcode-101】 对称二叉树

    101. 对称二叉树 (1过) 给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [ ...

  8. 【洛谷P5018】对称二叉树

    题目大意:定义对称二叉树为每个节点的左右子树交换后与原二叉树仍同构的二叉树,求给定的二叉树的最大对称二叉子树的大小. 代码如下 #include <bits/stdc++.h> using ...

  9. 判断对称二叉树 python代码

    对称二叉树的含义非常容易理解,左右子树关于根节点对称,具体来讲,对于一颗对称二叉树的每一颗子树,以穿过根节点的直线为对称轴,左边子树的左节点=右边子树的右节点,左边子树的右节点=左边子树的左节点.所以 ...

随机推荐

  1. Silverlight调用一般性处理程序模拟Silverlight调用WCF效果(2)

    [置顶] Silverlight调用一般性处理程序模拟Silverlight调用WCF效果(2) 分类: 技术2012-03-31 12:51 548人阅读 评论(0) 收藏 举报 silverlig ...

  2. Called attach on a child which is not detached

    问题:Called attach on a child which is not detached: ViewHolder#出现问题的原因 经过google后发现,出现该问题的原因是由于recycle ...

  3. nginx开发(二)配置mp4文件在线播放

    1: 第一步先开打nginx的文件夹遍历功能 vi /usr/local/nginx/conf/nginx.conf #编辑配置文件,在http {下面添加以下内容: autoindex on; #开 ...

  4. 关于js-cookie使用出现兼容性问题以及js-cookie的如何使用

    最近使用vue开发的项目,开发过程引入了js-cookie插件,在PC端以及移动端网页调试都没出现问题,但是打包成APP在安卓手机调试发现使用js-cookie保存的数据失效了,然后只能使用local ...

  5. Redis设置认证密码

    1.找到Redis里的redis.conf配置文件:搜素requirepass所在的行,格式为:requirepass password 2.redis-cli客户端登陆格式:redis-cli -a ...

  6. MySQL 启动服务和登陆参数

    启动MySQL服务:net start mysql; 停止MySQL服务:net stop mysql; 参数 描述 -D,--database=name 打开指定数据库 --delimiter=na ...

  7. bzoj 4719: [Noip2016]天天爱跑步【树上差分+dfs】

    长久以来的心理阴影?但是其实非常简单-- 预处理出deep和每组st的lca,在这里我简单粗暴的拿树剖爆算了 然后考虑对于一组s t lca来说,被这组贡献的观察员x当且仅当: x在s到lca的路径上 ...

  8. 第四代增强 源代码增强(ABAP Source Code Enhancements)

    显式代码增强的创建 se38打开你要增强的程序 进入编辑状态 在菜单栏选择: Edit->Enhancement Opreations->Create option. 此时弹出Create ...

  9. LIS UVA 10534 Wavio Sequence

    题目传送门 题意:找对称的,形如:123454321 子序列的最长长度 分析:LIS的nlogn的做法,首先从前扫到尾,记录每个位置的最长上升子序列,从后扫到头同理.因为是对称的,所以取较小值*2-1 ...

  10. 贪心 FZU 2013 A short problem

    题目传送门 /* 题意:取长度不小于m的序列使得和最大 贪心:先来一个前缀和,只要长度不小于m,从m开始,更新起点k最小值和ans最大值 */ #include <cstdio> #inc ...