JMM 掌管着一个线程对内存的动作 (读和写)影响其他线程对内存的动作的方式。由于使用处理器寄存器和预处理 cache 来提高内存访问速度带来的性能提升,Java 语言规范(JLS)允许一些内存操作并不对于所有其他线程立即可见。有两种语言机制可用于保证跨线程内存操作的一致性――synchronized 和 volatile。
按照 JLS 的说法,“在没有显式同步的情况下,一个实现可以自由地更新主存,更新时所采取的顺序可能是出人意料的。”其意思是说,如果没有同步的话,在一个给定线程中某种顺序的写操作对于另外一个不同的线程来说可能呈现出不同的顺序, 并且对内存变量的更新从一个线程传播到另外一个线程的时间是不可预测的。
虽然使用同步最常见的原因是保证对代码关键部分的原子访问,但实际上同步提供三个独立的功能――原子性、可见性和顺序性。
原子性非常简单――同步实施一个可重入的(reentrant)互斥,防止多于一个的线程同时执行由一个给定的监视器保护的代码块。不幸的是,多数文章都只关注原子性方面,而忽略了其他方面。
但是同步在 JMM 中也扮演着很重要的角色,会引起 JVM 在获得和释放监视器的时候执行内存壁垒(memory barrier)。
一个线程在获得一个监视器之后,它执行一个读屏障(read barrier)――使得缓存在线程局部内存(比如说处理器缓存或者处理器寄存器)中的所有变量都失效,这样就会导致处理器重新从主存中读取同步代码块使用的变量。与此类似,在释放监视器时,线程会执行一个写屏障(write barrier)――将所有修改过的变量写回主存。
互斥独占和内存壁垒结合使用意味着只要您在程序设计的时候遵循正确的同步法则(也就是说,每当写一个后面可能被其他线程访问的变量,或者读取一个可能最后被另一个线程修改的变量时,都要使用同步),每个线程都会得到它所使用的共享变量的正确的值。
在有些情况下,比如说在像ConcurrentHashMap 之类的一些使用非常广泛的库类中,在开发过程当中还需要一些额外的专业技能和努力(可能比一般的开发要多出很多倍)来获得较高的性能。

处理器内存模型

顺序一致性内存模型是一个理论参考模型,JMM和处理器内存模型在设计时通常会把顺序一致性内存模型作为参照。JMM和处理器内存模型在设计时会对顺序一致性模型做一些放松,因为如果完全按照顺序一致性模型来实现处理器和JMM,那么很多的处理器和编译器优化都要被禁止,这对执行性能将会有很大的影响。

根据对不同类型读/写操作组合的执行顺序的放松,可以把常见处理器的内存模型划分为下面几种类型:

  1. 放松程序中写-读操作的顺序,由此产生了total store ordering内存模型(简称为TSO)。
  2. 在前面1的基础上,继续放松程序中写-写操作的顺序,由此产生了partial store order 内存模型(简称为PSO)。
  3. 在前面1和2的基础上,继续放松程序中读-写和读-读操作的顺序,由此产生了relaxed memory order内存模型(简称为RMO)和PowerPC内存模型。

注意,这里处理器对读/写操作的放松,是以两个操作之间不存在数据依赖性为前提的(因为处理器要遵守as-if-serial语义,处理器不会对存在数据依赖性的两个内存操作做重排序)。

下面的表格展示了常见处理器内存模型的细节特征:

内存模型名称 对应的处理器 Store-Load 重排序 Store-Store重排序 Load-Load 和Load-Store重排序 可以更早读取到其它处理器的写 可以更早读取到当前处理器的写
TSO sparc-TSOX64 Y       Y
PSO sparc-PSO Y Y     Y
RMO ia64 Y Y Y   Y
PowerPC PowerPC Y Y Y Y Y

在这个表格中,我们可以看到所有处理器内存模型都允许写-读重排序,原因在第一章以说明过:它们都使用了写缓存区,写缓存区可能导致写-读操作重排序。同时,我们可以看到这些处理器内存模型都允许更早读到当前处理器的写,原因同样是因为写缓存区:由于写缓存区仅对当前处理器可见,这个特性导致当前处理器可以比其他处理器先看到临时保存在自己的写缓存区中的写。

上面表格中的各种处理器内存模型,从上到下,模型由强变弱。越是追求性能的处理器,内存模型设计的会越弱。因为这些处理器希望内存模型对它们的束缚越少越好,这样它们就可以做尽可能多的优化来提高性能。

由于常见的处理器内存模型比JMM要弱,java编译器在生成字节码时,会在执行指令序列的适当位置插入内存屏障来限制处理器的重排序。同时,由于各种处理器内存模型的强弱并不相同,为了在不同的处理器平台向程序员展示一个一致的内存模型,JMM在不同的处理器中需要插入的内存屏障的数量和种类也不相同。下图展示了JMM在不同处理器内存模型中需要插入的内存屏障的示意图:

如上图所示,JMM屏蔽了不同处理器内存模型的差异,它在不同的处理器平台之上为java程序员呈现了一个一致的内存模型。

JMM,处理器内存模型与顺序一致性内存模型之间的关系

JMM是一个语言级的内存模型,处理器内存模型是硬件级的内存模型,顺序一致性内存模型是一个理论参考模型。下面是语言内存模型,处理器内存模型和顺序一致性内存模型的强弱对比示意图:

从上图我们可以看出:常见的4种处理器内存模型比常用的3中语言内存模型要弱,处理器内存模型和语言内存模型都比顺序一致性内存模型要弱。同处理器内存模型一样,越是追求执行性能的语言,内存模型设计的会越弱。

JMM的设计

从JMM设计者的角度来说,在设计JMM时,需要考虑两个关键因素:

  • 程序员对内存模型的使用。程序员希望内存模型易于理解,易于编程。程序员希望基于一个强内存模型来编写代码。
  • 编译器和处理器对内存模型的实现。编译器和处理器希望内存模型对它们的束缚越少越好,这样它们就可以做尽可能多的优化来提高性能。编译器和处理器希望实现一个弱内存模型。

由于这两个因素互相矛盾,所以JSR-133专家组在设计JMM时的核心目标就是找到一个好的平衡点:一方面要为程序员提供足够强的内存可见性保证;另一方面,对编译器和处理器的限制要尽可能的放松。下面让我们看看JSR-133是如何实现这一目标的。

为了具体说明,请看前面提到过的计算圆面积的示例代码:

  1. double pi  = 3.14;    //A
  2. double r   = 1.0;     //B
  3. double area = pi * r * r; //C

上面计算圆的面积的示例代码存在三个happens- before关系:

  1. A happens- before B;
  2. B happens- before C;
  3. A happens- before C;

由于A happens- before B,happens- before的定义会要求:A操作执行的结果要对B可见,且A操作的执行顺序排在B操作之前。 但是从程序语义的角度来说,对A和B做重排序即不会改变程序的执行结果,也还能提高程序的执行性能(允许这种重排序减少了对编译器和处理器优化的束缚)。也就是说,上面这3个happens- before关系中,虽然2和3是必需要的,但1是不必要的。因此,JMM把happens- before要求禁止的重排序分为了下面两类:

  • 会改变程序执行结果的重排序。
  • 不会改变程序执行结果的重排序。

JMM对这两种不同性质的重排序,采取了不同的策略:

  • 对于会改变程序执行结果的重排序,JMM要求编译器和处理器必须禁止这种重排序。
  • 对于不会改变程序执行结果的重排序,JMM对编译器和处理器不作要求(JMM允许这种重排序)。

下面是JMM的设计示意图:

从上图可以看出两点:

  • JMM向程序员提供的happens- before规则能满足程序员的需求。JMM的happens- before规则不但简单易懂,而且也向程序员提供了足够强的内存可见性保证(有些内存可见性保证其实并不一定真实存在,比如上面的A happens- before B)。
  • JMM对编译器和处理器的束缚已经尽可能的少。从上面的分析我们可以看出,JMM其实是在遵循一个基本原则:只要不改变程序的执行结果(指的是单线程程序和正确同步的多线程程序),编译器和处理器怎么优化都行。比如,如果编译器经过细致的分析后,认定一个锁只会被单个线程访问,那么这个锁可以被消除。再比如,如果编译器经过细致的分析后,认定一个volatile变量仅仅只会被单个线程访问,那么编译器可以把这个volatile变量当作一个普通变量来对待。这些优化既不会改变程序的执行结果,又能提高程序的执行效率。

JMM的内存可见性保证

Java程序的内存可见性保证按程序类型可以分为下列三类:

  1. 单线程程序。单线程程序不会出现内存可见性问题。编译器,runtime和处理器会共同确保单线程程序的执行结果与该程序在顺序一致性模型中的执行结果相同。
  2. 正确同步的多线程程序。正确同步的多线程程序的执行将具有顺序一致性(程序的执行结果与该程序在顺序一致性内存模型中的执行结果相同)。这是JMM关注的重点,JMM通过限制编译器和处理器的重排序来为程序员提供内存可见性保证。
  3. 未同步/未正确同步的多线程程序。JMM为它们提供了最小安全性保障:线程执行时读取到的值,要么是之前某个线程写入的值,要么是默认值(0,null,false)。

下图展示了这三类程序在JMM中与在顺序一致性内存模型中的执行结果的异同:

只要多线程程序是正确同步的,JMM保证该程序在任意的处理器平台上的执行结果,与该程序在顺序一致性内存模型中的执行结果一致。

JSR-133对旧内存模型的修补

JSR-133对JDK5之前的旧内存模型的修补主要有两个:

  • 增强volatile的内存语义。旧内存模型允许volatile变量与普通变量重排序。JSR-133严格限制volatile变量与普通变量的重排序,使volatile的写-读和锁的释放-获取具有相同的内存语义。
  • 增强final的内存语义。在旧内存模型中,多次读取同一个final变量的值可能会不相同。为此,JSR-133为final增加了两个重排序规则。现在,final具有了初始化安全性。

参考文献

    1. Computer Architecture: A Quantitative Approach, 4th Edition
    2. Shared memory consistency models: A tutorial
    3. Intel® Itanium® Architecture Software Developer’s Manual Volume 2: System Architecture
    4. Concurrent Programming on Windows
    5. JSR 133 (Java Memory Model) FAQ
    6. The JSR-133 Cookbook for Compiler Writers
    7. Java theory and practice: Fixing the Java Memory Model, Part 2

深入理解JMM(Java内存模型) --(七)总结的更多相关文章

  1. Java多线程专题2: JMM(Java内存模型)

    合集目录 Java多线程专题2: JMM(Java内存模型) Java中Synchronized关键字的内存语义是什么? If two or more threads share an object, ...

  2. Java并发编程:JMM(Java内存模型)和volatile

    1. 并发编程的3个概念 并发编程时,要想并发程序正确地执行,必须要保证原子性.可见性和有序性.只要有一个没有被保证,就有可能会导致程序运行不正确. 1.1. 原子性 原子性:即一个或多个操作要么全部 ...

  3. Java并发编程:JMM (Java内存模型) 以及与volatile关键字详解

    目录 计算机系统的一致性 Java内存模型 内存模型的3个重要特征 原子性 可见性 有序性 指令重排序 volatile关键字 保证可见性和防止指令重排 不能保证原子性 计算机系统的一致性 在现代计算 ...

  4. Java 线程 — JMM Java内存模型

    JMM Java Memory Model,Java内存模型,属于语言级的内存模型 并发编程中存在的问题: 如何通信:用于线程之间交换信息.两种方式:共享内存,消息传递 如何同步:用于控制不同线程间操 ...

  5. JMM——Java内存模型抽象|八种同步操作|操作规则

    JMM 调用栈&本地变量在线程栈上 对象整体在堆上(包括其本地变量,不论类型),栈有其引用即可访问, 线程调用同一个对象时,是访问该对象的私有拷贝 每个CPU有自己的高速缓存 高速缓存存在意义 ...

  6. 深入理解JVM - Java内存模型与线程 - 第十二章

    Java内存模型 主内存与工作内存 Java内存模型主要目标:定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节.此处的变量(Variable)与Java编程中 ...

  7. JMM - Java内存模型

    内存模型的作用是定义变量的访问规则.包含:实例字段.静态字段.构成数组对象的元素.不包括局部变量和方法参数等线程私有变量. JMM所有变量都在主存,每个线程都有自己的工作内存.线程的工作内存中保存了线 ...

  8. 全面理解Java内存模型

    尊重原创:http://blog.csdn.net/suifeng3051/article/details/52611310 Java内存模型即JavaMemory Model,简称JMM.JMM定义 ...

  9. 多线程并发之java内存模型JMM

    多线程概念的引入是人类又一次有效压寨计算机的体现,而且这也是非常有必要的,因为一般运算过程中涉及到数据的读取,例如从磁盘.其他系统.数据库等,CPU的运算速度与数据读取速度有一个严重的不平衡,期间如果 ...

  10. 多线程系列八:线程安全、Java内存模型(JMM)、底层实现原理

    一.线程安全 1.  怎样让多线程下的类安全起来 无状态.加锁.让类不可变.栈封闭.安全的发布对象 2. 死锁 2.1 死锁概念及解决死锁的原则 一定发生在多个线程争夺多个资源里的情况下,发生的原因是 ...

随机推荐

  1. Redis 压缩存储的配置

    如题,redis是采用了ziplist 元素在不足一定数量时采用压缩存储 hash: zset: list: 如上图所示: ziplist-entries:最大元素数量(即存储了多少个元素) zipl ...

  2. admin源码之url设计

    如何实现批量设计url? 1.创建Django项目 2.新建app01 和 app02 3.在models.py中创建模型 4.在settings.py中完成数据库配置.app配置等 5.数据库迁移 ...

  3. matplotlib多种绘图方式

    目录 散点图 条形图 直方图 总结 散点图 假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律? a = [1 ...

  4. 真--可并堆模板--BZOJ2333: [SCOI2011]棘手的操作

    n<=300000个点,开始是独立的,m<=300000个操作: 方法一:单点修改.查询,区间修改.查询?等等等等这里修改是块修改不是连续的啊,那就让他连续呗!具体方法:离线后,每次连接两 ...

  5. BitMap算法 .net实现 用于去重并且排序,适用于大型权限管理 ,大数据去重排序

    BitMap利用byte特性 针对排序+去重  最佳实践: 100万条数据的排序+去重用时200毫秒左右 static void Main(string[] args) { ]; /*alias*/ ...

  6. Jquery那些事

    Jquery选择器介绍: 我们可以通过Jquery选择器从网页文档中找到我们需要的DOM节点: 主要还时看文档!! (1)基本选择器 属性id    类别class       文档标签 (2)属性选 ...

  7. codevs——1039 数的划分

    1039 数的划分 2001年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 将整数 ...

  8. hdfs是什么?

    参考:https://www.cnblogs.com/shijiaoyun/p/5778025.html hadoop分布式文件系统 1.hdfs是一个分布式文件系统,简单理解就是多台机器组成的一个文 ...

  9. SLF4J 和 Logback 在 Maven 项目中的使用方法

    原文:http://blog.csdn.net/llmmll08/article/details/70217120 本文介绍 SLF4J 和 Logback 在 Maven 项目中的用法,包括日志框架 ...

  10. 【Nginx】负载均衡-IP哈希策略剖析

    转自:江南烟雨 IP哈希初始化 IP哈希的初始化函数ngx_http_upstream_init_ip_hash(ngx_http_upstream_ip_hash_module.c): static ...