就是套路咯,设s[i]为1+2+...i

首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \)

然后推一推

\[f[i]=f[j]+a[i]+(i-j)*i-(s[i]-s[j])
\]

\[f[i]=f[j]+a[i]+i*i-i*j-s[i]+s[j]
\]

\[i*j+f[i]=f[j]+s[j]+i*i+a[i]-s[i]
\]

\[k=i,b=f[i],y=f[j]+s[j]+i*i+a[i]-s[i]
\]

就没啦

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005,inf=1e9;
int n,q[N],l,r;
long long a[N],f[N],s[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double wk(int j,int k)
{
return (double)(f[j]+s[j]-f[k]-s[k])/(double)(j-k);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read(),s[i]=s[i-1]+i;
// for(int i=1;i<=n;i++)
// {
// f[i]=inf;
// for(int j=0;j<i;j++)
// f[i]=min(f[i],f[j]+a[i]+(i-j)*i-(s[i]-s[j]));
// }
for(int i=1;i<=n;i++)
{
while(l<r&&wk(q[l+1],q[l])<i)
l++;
f[i]=f[q[l]]+a[i]+1ll*(i-q[l])*i-(s[i]-s[q[l]]);
while(l<r&&wk(q[r-1],q[r])>wk(q[r],i))
r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return 0;
}

bzoj 3156: 防御准备【斜率优化dp】的更多相关文章

  1. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  2. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  3. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  4. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  5. bzoj 3156 防御准备(斜率DP)

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 837  Solved: 395[Submit][Status][Discuss] ...

  6. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  7. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  8. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  10. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

随机推荐

  1. java 编码乱码问题

    Tomcat的server.xml 文件Connector标签加上URIEncoding="utf-8": <Connector port=" protocol=& ...

  2. MVC系统学习5——验证

    其实关于Mvc的验证在上一篇已经有讲过一些了,可以通过在我们定义的Model上面添加相应的System.ComponentModel.DataAnnotations空间下的验证属性.在服务器端通过Mo ...

  3. 7-10 公路村村通(30 分)(最小生成树Prim算法)

    7-10 公路村村通(30 分) 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本. 输入格式: 输入数据包括城镇数目正整数N(≤1 ...

  4. js Date()日期函数浏览器兼容问题解决方法

    一般 直接new Date() 是不会出现兼容性问题的,而 new Date(datetimeformatstring) 常常会出现浏览器兼容性问题,为什么,datetimeformatstring中 ...

  5. Organize Your Train part II 字典树(此题专卡STL)

    Organize Your Train part II Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8787   Acce ...

  6. codevs——1039 数的划分

    1039 数的划分 2001年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 将整数 ...

  7. Java DynamoDB 增加、删除、修改、查询

    准备jar包 <dependency> <groupId>com.amazonaws</groupId> <artifactId>aws-java-sd ...

  8. JAVA分布式架构

  9. MongoDB小结11 - update【save】

    save是一个shell函数,调用它,可以在文档不存在时插入,存在时更新,它只有一个参数:文档.如果文档有 _id 这个 键,那么save会调用upsert,否则会调用insert,非常方便.

  10. linux内核CFS进程调度策略

    一.概述 首先简介一下主要的设计思路, CFS思路非常easy.就是依据各个进程的权重分配执行时间(权重怎么来的后面再说). 进程的执行时间计算公式为: 分配给进程的执行时间 = 调度周期 * 进程权 ...