题目:给你一根长度为n的绳子,请把绳子剪成m段,每段绳子的长度记为k[0],k[1]....,k[m]。请问k[0]xk[1]x...,k[m]可能的最大乘积是多少。例如:长度为8剪成2 3 3 得到最大乘积18.

分析:绳子的最小基础剪发可以分为2 或3, 也就是,当数据中全是由2 或3 组成时,相乘的结果最大。因此,由小至大,

  * 绳子的长为2时,只能剪成1 1,即f(2) = 1x1 = 1;

  * 当绳子长为3时,可能将绳子剪成长度为1 2 或者1 1 1,由于1 x 2 > 1 x 1 x 1,因此f(3)=2;
  * 当绳子长为4时,可能将绳子剪成长度为2 2 或者 1 2 1 或者1 1 1 1或者 1 3,由于2 x 2 > 其他,因此f(4)=2*2
  * 当绳子长为5时,可能将绳子剪成长度为3 2 或者...,由于3 x 2 > 其他,因此f(5)=3*2;
  * 当绳子长为6时,可能将绳子剪成长度为3 3 或者...,由于3 x 3 > 其他,因此f(6)=3*3=9;//不使用f(3)因为3为最小单位中的最大值
  * 当绳子长为7时,可能将绳子剪成长度为4 3 或者...,由于4 x 3 > 其他,因此f(7)=f(4)*3=2*2*3=12;我们的算法求解范围为由1-n。由小向大算,因此f(4)我们已经算出来了,直接使用即可,不必重复计算。
  * 当绳子长为8时,可能将绳子剪成长度为2 6 或者...,因此f(8)=f(6)*2=3*3*2=18;我们的算法求解范围为由1-n。由小向大算,因此f(6)我们已经算出来了,直接使用即可,不必重复计算。

  同理,当绳子长为9时,比较2*f(7)的值和3*f(6)的值即可.当绳子长为10时,比较2*f(8)的值和3*f(7)的值即可..当绳子长为11时,比较2*f(9)的值和3*f(8)的值即可.

public int maxProductAfterCutting(int length){
if(length<2){
return 0;
}
if(length==2){
return 1;
}
if(length==3){
return 2;
} int[] products = new int[length+1];
products[0]=0;
products[1]=1;
products[2]=2;
products[3]=3;
int max=0;
for(int i=4;i<=length;i++){
max=0;
for(int j=1;j<=i/2;j++){
int product =products[j]*products[i-j];
if(max<product) {
max = product;
}
}
products[i]=max;
}
return products[length];
}

这是另一种实现方式。按照最小基数单元来的。2 3,减少一点点计算次数。第一次感受到了算法的美妙之处~~~不要鄙视我,哈哈

public int maxProductAfterCutting(int length) {
if (length < 2) {
return 0;
}
if (length == 2) {
return 1;
}
if (length == 3) {
return 2;
} int[] products = new int[length + 1];
products[0] = 0;
products[1] = 1;
products[2] = 2;
products[3] = 3;
for (int i = 4; i <= length; i++) {
int p2 = 2 * products[i - 2];
int p3 = 3 * products[i - 3];
products[i] = p2 < p3 ? p3 : p2;
}
return products[length];
}

上面是动态规划法,下面是贪婪法。

public int maxProductAfterCutting2(int length) {
if (length < 2) {
return 0;
}
if (length == 2) {
return 1;
}
if (length == 3) {
return 2;
}
int paraThree = length / 3;
int paraTwo = 1;
if (length - paraThree * 3 == 1) {
paraThree--;
paraTwo = 2;
}
return (int) (Math.pow(3, paraThree)) * (int) (Math.pow(2, paraTwo));
}

剑指Offer(书):剪绳子的更多相关文章

  1. 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂

    剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...

  2. 剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论

    剑指 Offer 14- I. 剪绳子 题目链接 还是343. 整数拆分的官方题解写的更清楚 本题说的将绳子剪成m段,m是大于1的任意一个正整数,也就是必须剪这个绳子,至于剪成几段,每一段多长,才能使 ...

  3. 剑指 Offer 14- II. 剪绳子 II

    剑指 Offer 14- II. 剪绳子 II 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m.n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]... ...

  4. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

  5. 剑指offer:剪绳子

    题目描述: 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可 ...

  6. Go语言实现:【剑指offer】剪绳子

    该题目来源于牛客网<剑指offer>专题. 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],-,k[ ...

  7. [剑指offer]14-1.剪绳子

    14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...

  8. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  9. 剑指offer:剪绳子(找规律,贪心算法,动态规划)

    1. 题目描述 /* 题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1] ...

  10. 【剑指offer】剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

随机推荐

  1. NOIp 2014飞扬的小鸟【dp】By cellur925

    题目传送门 放在14年Day1T3的dp题目...应该比较看出来是dp算法吧,因为在本蒟蒻看来求最值的算法不清晰时就是dp了==. 状态还是比较好设计的,考虑到每个情况需要记录下的量:f[i][j]表 ...

  2. 轻松搞定JSONP跨域请求【转】,文章非常好!

    http://blog.csdn.net/u014607184/article/details/52027879

  3. CSS选择器优先级【转】

    样式的优先级 多重样式(Multiple Styles):如果外部样式.内部样式和内联样式同时应用于同一个元素,就是使多重样式的情况. 一般情况下,优先级如下: (外部样式)External styl ...

  4. solr管理界面下统计多个时间段的数据 facet.query

    在Raw Query Parameters参数里面输入时间段即可 如下图所示: facet.query=publishTime:[2017-06-05T00:00:00Z TO 2017-06-07T ...

  5. R 关于全局变量

    不得不吐槽了 写了这么多,竟然今天才发现R的全局变量在函数名空间里是不能赋值的,我去!!! 就是说在函数里面,全局变量名是可读的,但不可写(写的时候 又会创建新的 自由变量了)

  6. sql 防注入插入

    var strsql = "insert into Staff_Answer (ExamTitleID,QuestionsID,MultipleChoice,RightOption,Answ ...

  7. mybatis通过插件方式实现读写分离

    原理:通过自定义mybatis插件,拦截Executor的update和query方法,检查sql中有select就用读的库,其它的用写的库(如果有调用存储过程就另当别论了) @Intercepts( ...

  8. centos 更换yum源 (解决下载慢的问题)

    先看有没有安装wget         wget -V 如果没有执行   yum -y install wget    进行安装 然后进行配置的备份 mv /etc/yum.repos.d/CentO ...

  9. linux AC的应用详解

    NAME ac - 输出用户连接时间 总览 ac [ -d | --daily-totals ] [ -y | --print-year ] [ -p | --individual-totals ] ...

  10. Microsoft Project 2010基础使用方法

    5.1 项目管理与Microsoft Project2010 Microsoft Project2010深受广大项目管理工程师的青睐. 5.1.1 项目管理的概念 项目管理是项目管理者在有限的资源约束 ...