Matching In Multiplication

Problem Description
In the mathematical discipline of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U and V are each independent sets) such that every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.

                       

Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.

Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.

Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.

For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.

It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.

Output
For each test case, print a single line containing an integer, denoting the weight of the given graph. Since the answer may be very large, please print the answer modulo 998244353.

Sample Input
1
2
2 1 1 4
1 4 2 3

Sample Output
16

题意:

  给你一个图,n点 2*n边,有边权。

  左边的1~n个点出度都为2,且都连向右边的点,两点之间,没有重边,求出每种完美匹配下各边乘积的总和

题解:

  不好好写就会wa死你哦,咕咕咕

  首先如果一个点的度数为11,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为11的点。

  那么剩下的图中左右各有mm个点,每个点度数都不小于22,且左边每个点度数都是22,而右侧总度数是2m2m,

  因此右侧只能是每个点度数都是22。这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。

  时间复杂度O(n)O(n)

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e6+, M = 1e3+,inf = 2e9; const LL mod = 998244353LL; queue<pii > q;
int vis[N],done[N],d[N],n,T,zhong;
LL ans1,ans2;
vector<pii > G[N];
void init() {
for(int i = ; i <= *n; ++i)
G[i].clear(),vis[i] = ,done[i] = ,d[i] = ;
}
void dfs(int u,int f,int p) {
vis[u] = ;
int flag = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(vis[to]) continue;
flag = ;
if(!p) ans1 = 1LL * ans1 * G[u][i].second % mod;
else ans2 = 1LL * ans2 * G[u][i].second % mod;
dfs(to,u, - p);
}
if(flag) {
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to != zhong) continue;
if(!p) ans1 = 1LL * ans1 * G[u][i].second % mod;
else ans2 = 1LL * ans2 * G[u][i].second % mod;
}
}
}
void make_faiil(int u,int f,int p) {
done[u] = ;
vis[u] =;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to == f || done[to]) continue;
make_faiil(to,u, - p);
}
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
init();
for(int i = ; i <= n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
d[i] += ;
d[x + n] += ;
G[i].push_back(MP(x + n,y));
G[x + n].push_back(MP(i,y)); scanf("%d%d",&x,&y);
d[i] += ;
d[x + n] += ;
G[i].push_back(MP(x + n,y));
G[x + n].push_back(MP(i,y));
}
int ok = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= *n; ++i) {
if(d[i] == ) {
q.push(MP(i,));
vis[i] = ;
}
}
LL ans = 1LL;
while(!q.empty()) {
pii k = q.front();
q.pop();
for(int i = ; i < G[k.first].size(); ++i) {
int to = G[k.first][i].first;
if(vis[to]) continue;
d[to] -= ;
if(d[to] == ) {
if(!k.second)ans = ans * G[k.first][i].second % mod;
q.push(MP(to,!k.second));
vis[to] = ;
}
}
}
//cout<<ans<<endl;
LL tmp1 = ans,tmp2 = ;
for(int i = ; i <= *n; ++i) {
if(!vis[i]){
// cout<<"huasndina " << i<<endl;
ans1 = 1LL,ans2 = 1LL;
zhong = i;
dfs(i,-,);
LL tmptmp = (ans1 + ans2) % mod;
ans = ans * tmptmp % mod;
}
}
printf("%lld\n",(ans)%mod);
}
return ;
} /*
10
5
1 1 2 3
1 2 3 4
3 5 4 7
3 6 4 8
4 9 5 10
4920
*/

HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑的更多相关文章

  1. HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4

    /* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...

  2. HDU 6073 Matching In Multiplication(拓扑排序)

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  3. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  4. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  5. 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)

    题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...

  6. hdu6073 Matching In Multiplication 分析+拓扑序

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  7. 2017 多校4 Matching In Multiplication(二分图)

    Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...

  8. HDU 1241 Oil Deposits --- 入门DFS

    HDU 1241 题目大意:给定一块油田,求其连通块的数目.上下左右斜对角相邻的@属于同一个连通块. 解题思路:对每一个@进行dfs遍历并标记访问状态,一次dfs可以访问一个连通块,最后统计数量. / ...

  9. HDU 2553(N皇后)(DFS)

    http://acm.hdu.edu.cn/showproblem.php?pid=2553 i表示行,map[i]表示列,然后用DFS遍历回溯 可以参考这篇文章: http://blog.csdn. ...

随机推荐

  1. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  2. python 之文件操作

    一.文件基本操作 1.文件的打开 打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作 文件句柄 = open('文件路径', '模式') 2. ...

  3. I.Tower Defense

    给你p个重塔,q个轻塔,把这些塔放在n*m的图中,这些塔会相互攻击同行同列的,轻塔不能受到攻击,重塔能承受一个塔的攻击, 问放的方法数. 先假定n < m. 可以先枚举放轻塔的个数为s,显然,方 ...

  4. 连接mysql报错 : The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time zone...

    time zone 时区错误 DBEAVER连接MySQL运行报错The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or repres ...

  5. Leetcode 数组问题:删除排序数组内的重复项

    问题描述: 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成 ...

  6. Java对象的死亡

    在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(即不可能再被任何途径使用的对象). 一,引用计数算法 给 ...

  7. Java Enum枚举的用法(转)

    说明:Java的枚举比dotnet的枚举好用,至少支持的方式有很多. 用法一:常量 在JDK1.5 之前,我们定义常量都是: public static fianl.... .现在好了,有了枚举,可以 ...

  8. ganglia-monitoring-centos-linux

    http://www.tecmint.com/install-configure-ganglia-monitoring-centos-linux/ http://monitor.gitlab.net/ ...

  9. SQL2000数据库密码被替换,重置密码提示未能找到存储过程sp_password解决方案

    利用windows身份验证进入查询分析器后在master数据库下运行如下脚本: create procedure sp_password @old sysname = NULL, -- the old ...

  10. Java并发编程-Executor框架(转)

    本文转自http://blog.csdn.net/chenchaofuck1/article/details/51606224 感谢作者 我们在传统多线程编程创建线程时,常常是创建一些Runnable ...