画一下柿子就知道是求区间乘积乘区间内所有质因数的(p-1)/p(就是求欧拉的公式嘛)

看上去莫队就很靠谱然而时间O(nsqrt(n)logn)并不资瓷

还是离线,确定右端点,对于1~i的区间内的质因数我们在树状数组把他们插入到最后一次出现的位置,然后扫一次求逆元+找质因数O(nlog^2n)

注意算质因子的时候不能用试除法啊

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL mod=1e9+;
int quick_pow(int A,int p)
{
int ret=;
while(p!=)
{
if(p%==)ret=(LL)ret*A%mod;
A=(LL)A*A%mod;p/=;
}
return ret;
}
int inv(int A){return quick_pow(A,mod-);} int pr,prime[],pm[];
bool v[];
void get_prime()
{
pr=;
for(int i=;i<=;i++)
{
if(v[i]==false)prime[++pr]=i,pm[i]=i;
for(int j=;j<=pr&&i*prime[j]<=;j++)
{
v[i*prime[j]]=true;
pm[i*prime[j]]=min(pm[i],prime[j]);
if(i%prime[j]==)break;
}
}
} int n;LL s[];
int lowbit(int x){return x&-x;}
void change(int x,LL k)
{
while(x<=n)
{
s[x]=s[x]*k%mod;
x+=lowbit(x);
}
}
LL getsum(int x)
{
LL ret=;
while(x>)
{
ret=ret*s[x]%mod;
x-=lowbit(x);
}
return ret;
} int a[];LL sm[];
struct query{int l,r,id;}q[];int as[];
bool cmp(query q1,query q2){return q1.r<q2.r;}
int last[];
int main()
{
get_prime();
scanf("%d",&n);
sm[]=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]), sm[i]=sm[i-]*a[i]%mod;
int Q;
scanf("%d",&Q);
for(int i=;i<=Q;i++)
scanf("%d%d",&q[i].l,&q[i].r), q[i].id=i;
sort(q+,q+Q+,cmp); int j=;
memset(last,,sizeof(last));
for(int i=;i<=n;i++)s[i]=;
for(int i=;i<=n;i++)
{
int d=a[i];
while(d>)
{
int p=pm[d];LL c=(LL)(p-)*inv(p)%mod;
if(last[p]>)change(last[p],inv(c));
last[p]=i;
change(last[p],c);
while(d%p==)d/=p;
} while(j<=Q&&q[j].r==i)
{
as[q[j].id]=sm[q[j].r]*inv(sm[q[j].l-])%mod*getsum(q[j].r)%mod*inv(getsum(q[j].l-))%mod;
j++;
}
} for(int i=;i<=Q;i++)printf("%d\n",as[i]);
return ;
}

51nod 1642 区间欧拉函数 && codeforce594D REQ的更多相关文章

  1. 【51Nod 1239】欧拉函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...

  2. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  3. 【51nod】1239 欧拉函数之和

    题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...

  4. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  5. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  6. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  7. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  8. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  9. 51Nod 1136 欧拉函数 Label:数论

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

随机推荐

  1. C++为什么抓不到除0错“异常”?

    http://blog.csdn.net/nanyu/article/details/6475555 有人问这个问题: try { std::cout << 10/0 << s ...

  2. iOS App Crash原理分析

    预备知识:OS X系统分析 1.内核XNU是Darwin的核心,也是整个OS X的核心.XNU本身由以下几个组件构成: Mach微核心 BSD层 libKern I/O Kit 此外,内核是模块化的, ...

  3. DH密钥交换算法

    DH密钥交换算法:DH的全称为Diffie-Hellman ,该算法可以在需要安全传输的前提下,确定双方的对称密钥,该算法的核心在于双方的私钥没有进入网络传输流程,根据对方的公钥和己方的私钥,可以计算 ...

  4. 数组--P1980 计数问题

    题目描述 题解 试计算在区间 1 到 n的所有整数中,数字 x(0 ≤ x ≤ 9)共出现了多少次?例如,在 1到 11中,即在 1,2,3,4,5,6,7,8,9,10,11 中,数字 1 出现了 ...

  5. Mybatis中and和or的细节处理

    当一条SQL中既有条件查又有模糊查的时候,偶尔会遇到这样的and拼接问题.参考如下代码: <select id="listSelectAllBusiness"> sel ...

  6. MySQL异常:com.mysql.jdbc.PacketTooBigException: Packet for query is too large

    ### Cause: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (1169 > 1024). You ...

  7. vim基础(一)

    今天看了下兄弟连的VIM讲解,又学了几个新命令,记录一下. 插入与删除 插入 首先还是插入,以前只知道i.今天发现原来还有a\A\i\I\o\O,下面具体说一下: 命令 含义 a 在光标后插入 A 在 ...

  8. 【Codeforces 922D】Robot Vacuum Cleaner

    [链接] 我是链接,点我呀:) [题意] 让你把n个字符串重新排序,然后按顺序连接在一起 使得这个组成的字符串的"sh"子序列最多 [题解] /* * 假设A的情况好于B * 也就 ...

  9. 字符串hash-BKDRHash

    unsigned int BKDRHash(char *str) { unsigned ; // 31 131 1313 13131 131313 etc.. unsigned ; while (*s ...

  10. C#中的定制特性(Attributes)

    C#中的定制特性(Attributes) 介绍 Attributes是一种新的描述信息,我们既可以使用attributes来定义设计期信息(例如:帮助文件.文档的URL),还可能用attributes ...